AIC for the non-concave penalized likelihood method

Yuta Umezu, Yusuke Shimizu, Hiroki Masuda, Yoshiyuki Ninomiya

    研究成果: ジャーナルへの寄稿学術誌査読

    9 被引用数 (Scopus)

    抄録

    Non-concave penalized maximum likelihood methods are widely used because they are more efficient than the Lasso. They include a tuning parameter which controls a penalty level, and several information criteria have been developed for selecting it. While these criteria assure the model selection consistency, they have a problem in that there are no appropriate rules for choosing one from the class of information criteria satisfying such a preferred asymptotic property. In this paper, we derive an information criterion based on the original definition of the AIC by considering minimization of the prediction error rather than model selection consistency. Concretely speaking, we derive a function of the score statistic that is asymptotically equivalent to the non-concave penalized maximum likelihood estimator and then provide an estimator of the Kullback–Leibler divergence between the true distribution and the estimated distribution based on the function, whose bias converges in mean to zero.

    本文言語英語
    ページ(範囲)247-274
    ページ数28
    ジャーナルAnnals of the Institute of Statistical Mathematics
    71
    2
    DOI
    出版ステータス出版済み - 4月 1 2019

    !!!All Science Journal Classification (ASJC) codes

    • 統計学および確率

    フィンガープリント

    「AIC for the non-concave penalized likelihood method」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル