Adaptive Topological Feature via Persistent Homology: Filtration Learning for Point Clouds

Naoki Nishikawa, Yuichi Ike, Kenji Yamanishi

研究成果: 書籍/レポート タイプへの寄稿会議への寄与

4 被引用数 (Scopus)

抄録

Machine learning for point clouds has been attracting much attention, with many applications in various fields, such as shape recognition and material science. For enhancing the accuracy of such machine learning methods, it is often effective to incorporate global topological features, which are typically extracted by persistent homology. In the calculation of persistent homology for a point cloud, we choose a filtration for the point cloud, an increasing sequence of spaces. Since the performance of machine learning methods combined with persistent homology is highly affected by the choice of a filtration, we need to tune it depending on data and tasks. In this paper, we propose a framework that learns a filtration adaptively with the use of neural networks. In order to make the resulting persistent homology isometry-invariant, we develop a neural network architecture with such invariance. Additionally, we show a theoretical result on a finite-dimensional approximation of filtration functions, which justifies the proposed network architecture. Experimental results demonstrated the efficacy of our framework in several classification tasks.

本文言語英語
ホスト出版物のタイトルAdvances in Neural Information Processing Systems 36 - 37th Conference on Neural Information Processing Systems, NeurIPS 2023
編集者A. Oh, T. Neumann, A. Globerson, K. Saenko, M. Hardt, S. Levine
出版社Neural information processing systems foundation
ISBN(電子版)9781713899921
出版ステータス出版済み - 2023
イベント37th Conference on Neural Information Processing Systems, NeurIPS 2023 - New Orleans, 米国
継続期間: 12月 10 202312月 16 2023

出版物シリーズ

名前Advances in Neural Information Processing Systems
36
ISSN(印刷版)1049-5258

会議

会議37th Conference on Neural Information Processing Systems, NeurIPS 2023
国/地域米国
CityNew Orleans
Period12/10/2312/16/23

!!!All Science Journal Classification (ASJC) codes

  • コンピュータ ネットワークおよび通信
  • 情報システム
  • 信号処理

フィンガープリント

「Adaptive Topological Feature via Persistent Homology: Filtration Learning for Point Clouds」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル