Adaptive basis expansion via l1 trend filtering

Daeju Kim, Shuichi Kawano, Yoshiyuki Ninomiya

研究成果: ジャーナルへの寄稿学術誌査読

1 被引用数 (Scopus)

抄録

We propose a new approach for nonlinear regression modeling by employing basis expansion for the case where the underlying regression function has inhomogeneous smoothness. In this case, conventional nonlinear regression models tend to be over- or underfitting, where the function is more or less smoother, respectively. First, the underlying regression function is roughly approximated with a locally linear function using an l1 penalized method, where this procedure is executed by extending an algorithm for the fused lasso signal approximator. We then extend the fused lasso signal approximator and develop an algorithm. Next, the residuals between the locally linear function and the data are used to adaptively prepare the basis functions. Finally, we construct a nonlinear regression model with these basis functions along with the technique of a regularization method. To select the optimal values of the tuning parameters for the regularization method, we provide an explicit form of the generalized information criterion. The validity of our proposed method is then demonstrated through several numerical examples.

本文言語英語
ページ(範囲)1005-1023
ページ数19
ジャーナルComputational Statistics
29
5
DOI
出版ステータス出版済み - 10月 2014

!!!All Science Journal Classification (ASJC) codes

  • 統計学および確率
  • 統計学、確率および不確実性
  • 計算数学

フィンガープリント

「Adaptive basis expansion via l1 trend filtering」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル