Active Brownian motion in threshold distribution of a Coulomb blockade model

Takayuki Narumi, Masaru Suzuki, Yoshiki Hidaka, Tetsuya Asai, Shoichi Kai

研究成果: ジャーナルへの寄稿学術誌査読

7 被引用数 (Scopus)


Randomly distributed offset charges affect the nonlinear current-voltage property via the fluctuation of the threshold voltage above which the current flows in an array of a Coulomb blockade (CB). We analytically derive the distribution of the threshold voltage for a model of one-dimensional locally coupled CB arrays and propose a general relationship between conductance and distribution. In addition, we show that the distribution for a long array is equivalent to the distribution of the number of upward steps for aligned objects of different heights. The distribution satisfies a novel Fokker-Planck equation corresponding to active Brownian motion. The feature of the distribution is clarified by comparing it with the Wigner and Ornstein-Uhlenbeck processes. It is not restricted to the CB model but is instructive in statistical physics generally.

ジャーナルPhysical Review E - Statistical, Nonlinear, and Soft Matter Physics
出版ステータス出版済み - 11月 29 2011

!!!All Science Journal Classification (ASJC) codes

  • 統計物理学および非線形物理学
  • 統計学および確率
  • 凝縮系物理学


「Active Brownian motion in threshold distribution of a Coulomb blockade model」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。