A theory of genera for cyclic coverings of links

研究成果: ジャーナルへの寄稿学術誌査読

7 被引用数 (Scopus)

抄録

Following the conceptual analogies between knots and primes, 3-manifolds and number fields, we discuss an analogue in knot theory after the model of the arithmetical theory of genera initiated by Gauss. We present an analog for cyclic coverings of links following along the line of Iyanaga-Tamagawa's genus theory for cyclic extentions over the rational number field. We also give examples of Z/2Z × Z/2Z-coverings of links for which the principal genus theorem does not hold.

本文言語英語
ページ(範囲)115-118
ページ数4
ジャーナルProceedings of the Japan Academy Series A: Mathematical Sciences
77
7
DOI
出版ステータス出版済み - 2001
外部発表はい

!!!All Science Journal Classification (ASJC) codes

  • 数学一般

フィンガープリント

「A theory of genera for cyclic coverings of links」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル