A stabilization technique for steady flow problems

Hiroshi Kanayama, Daisuke Tagami, Takahiro Araki, Hirokazu Kume

研究成果: ジャーナルへの寄稿学術誌査読

4 被引用数 (Scopus)

抄録

Finite element methods with stabilization techniques for the steady Navier-Stokes equations are studied. To solve the steady Navier-Stokes equations, the Newton method is used. To compute the problem at each step of the nonlinear iteration, a stabilization technique is introduced. The mixed interpolation, which satisfies the inf-sup condition, with stabilized terms is also considered to investigate its computational efficiency. Numerical results show that stabilized terms improve convergences of the Newton method especially in the case of high Reynolds numbers as well as those of the linear solver at each step of the nonlinear iteration.

本文言語英語
ページ(範囲)297-301
ページ数5
ジャーナルInternational Journal of Computational Fluid Dynamics
18
4
DOI
出版ステータス出版済み - 5月 2004

!!!All Science Journal Classification (ASJC) codes

  • 計算力学
  • 航空宇宙工学
  • 凝縮系物理学
  • エネルギー工学および電力技術
  • 材料力学
  • 機械工学

フィンガープリント

「A stabilization technique for steady flow problems」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル