A Spiking Neural Network with Resistively Coupled Synapses Using Time-to-First-Spike Coding Towards Efficient Charge-Domain Computing

Yusuke Sakemi, Kai Morino, Takashi Morie, Takeo Hosomi, Kazuyuki Aihara

研究成果: 書籍/レポート タイプへの寄稿会議への寄与

1 被引用数 (Scopus)

抄録

Spiking neural networks (SNNs) are expected to be energy efficient when implemented on dedicated hardware. However, fully exploiting SNN's characteristics such as event-driven communications challenges on circuit designers and manufacturers. In this paper, inspired by the recent success of an artificial neural network (ANN) based system, known as charge-domain computing (CDC), we propose a novel framework for SNNs called 'RC-Spike.' As CDC, RC-Spike uses a two-phase system: input spikes are received in the accumulation phase, and a neuron produces a spike in the spike generation phase. In RC-Spike, synaptic currents are accumulated with resistively coupled synapses, with which circuit implementation can be simplified compared with CDC circuits. Because of this resistive coupling effect, a neuron in RC-Spike does not compute an exact dot product. However, RC-Spike can be successfully trained in the framework of SNNs, and we show that the learning performance of RC-Spike is as high as ANNs on the MNIST and Fashion-MNIST datasets.

本文言語英語
ホスト出版物のタイトルIEEE International Symposium on Circuits and Systems, ISCAS 2022
出版社Institute of Electrical and Electronics Engineers Inc.
ページ2152-2156
ページ数5
ISBN(電子版)9781665484855
DOI
出版ステータス出版済み - 2022
イベント2022 IEEE International Symposium on Circuits and Systems, ISCAS 2022 - Austin, 米国
継続期間: 5月 27 20226月 1 2022

出版物シリーズ

名前Proceedings - IEEE International Symposium on Circuits and Systems
2022-May
ISSN(印刷版)0271-4310

会議

会議2022 IEEE International Symposium on Circuits and Systems, ISCAS 2022
国/地域米国
CityAustin
Period5/27/226/1/22

!!!All Science Journal Classification (ASJC) codes

  • 電子工学および電気工学

フィンガープリント

「A Spiking Neural Network with Resistively Coupled Synapses Using Time-to-First-Spike Coding Towards Efficient Charge-Domain Computing」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル