A Simple, General Synthetic Route toward Nanoscale Transition Metal Borides

Palani R. Jothi, Kunio Yubuta, Boniface P.T. Fokwa

研究成果: ジャーナルへの寄稿学術誌査読

104 被引用数 (Scopus)


Most nanomaterials, such as transition metal carbides, phosphides, nitrides, chalcogenides, etc., have been extensively studied for their various properties in recent years. The similarly attractive transition metal borides, on the contrary, have seen little interest from the materials science community, mainly because nanomaterials are notoriously difficult to synthesize. Herein, a simple, general synthetic method toward crystalline transition metal boride nanomaterials is proposed. This new method takes advantage of the redox chemistry of Sn/SnCl2, the volatility and recrystallization of SnCl2 at the synthesis conditions, as well as the immiscibility of tin with boron, to produce crystalline phases of 3d, 4d, and 5d transition metal nanoborides with different morphologies (nanorods, nanosheets, nanoprisms, nanoplates, nanoparticles, etc.). Importantly, this method allows flexibility in the choice of the transition metal, as well as the ability to target several compositions within the same binary phase diagram (e.g., Mo2B, α-MoB, MoB2, Mo2B4). The simplicity and wide applicability of the method should enable the fulfillment of the great potential of this understudied class of materials, which show a variety of excellent chemical, electrochemical, and physical properties at the microscale.

ジャーナルAdvanced Materials
出版ステータス出版済み - 4月 5 2018

!!!All Science Journal Classification (ASJC) codes

  • 材料科学一般
  • 材料力学
  • 機械工学


「A Simple, General Synthetic Route toward Nanoscale Transition Metal Borides」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。