A simple and improved algorithm for integer factorization with implicit hints

Koji Nuida, Naoto Itakura, Kaoru Kurosawa

研究成果: 書籍/レポート タイプへの寄稿会議への寄与

2 被引用数 (Scopus)

抄録

Given two integers N1 = p1q1 and N2 = p2q2 with α-bit primes q1, q2, suppose that the t least significant bits of p1 and p2 are equal. May and Ritzenhofen (PKC 2009) developed a factoring algorithm for N1,N2 when t ≥ 2α+3; Kurosawa and Ueda (IWSEC 2013) improved the bound to t ≥ 2α + 1. In this paper, we propose a polynomial-time algorithm in a parameter κ, with an improved bound t = 2α−O(log κ); it is the first non-constant improvement of the bound. Both the construction and the proof of our algorithm are very simple; the worst-case complexity of our algorithm is evaluated by an easy argument. We also give some computer experimental results showing the efficiency of our algorithm for concrete parameters, and discuss potential applications of our result to security evaluations of existing factoring-based primitives.

本文言語英語
ホスト出版物のタイトルTopics in Cryptology - CT-RSA 2015 - The Cryptographers’ Track at the RSA Conference 2015, Proceedings
編集者Kaisa Nyberg
出版社Springer Verlag
ページ258-269
ページ数12
ISBN(電子版)9783319167145
DOI
出版ステータス出版済み - 2015
外部発表はい
イベントRSA Conference Cryptographers’ Track, CT-RSA 2015 - San Francisco, 米国
継続期間: 4月 21 20154月 24 2015

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
9048
ISSN(印刷版)0302-9743
ISSN(電子版)1611-3349

会議

会議RSA Conference Cryptographers’ Track, CT-RSA 2015
国/地域米国
CitySan Francisco
Period4/21/154/24/15

!!!All Science Journal Classification (ASJC) codes

  • 理論的コンピュータサイエンス
  • コンピュータサイエンス一般

フィンガープリント

「A simple and improved algorithm for integer factorization with implicit hints」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル