A note on infinite divisibility of zeta distributions

Shingo Saito, Tatsushi Tanaka

研究成果: ジャーナルへの寄稿学術誌査読

3 被引用数 (Scopus)

抄録

The Riemann zeta distribution, defined as the one whose characteristic function is the normalised Riemann zeta function, is an interesting example of an infinitely divisible distribution. The infinite divisibility of the distribution has been proved with recourse to the Euler product of the Riemann zeta function. In this paper, we look at multiple zeta-star function, which is a multi-dimensional generalisation of the Riemann zeta function and is believed to have no Euler product, and show that the corresponding distribution is not infinitely divisible.

本文言語英語
ページ(範囲)1455-1461
ページ数7
ジャーナルApplied Mathematical Sciences
6
29-32
出版ステータス出版済み - 2012

!!!All Science Journal Classification (ASJC) codes

  • 応用数学

フィンガープリント

「A note on infinite divisibility of zeta distributions」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル