A new analysis of scattering problems for electromagnetic crystals consisting of inhomogeneous dielectric materials and conductors

Hongting Jia

    研究成果: 書籍/レポート タイプへの寄稿会議への寄与

    抄録

    A novel formulation for analyzing scattering problems from two dimensional periodic structure consisting of inhomogeneous dielectric materials and metallic conductors has been proposed. The present method is a combination of the Fourier series technique and S-matrix method. Fourier series expansion technique is a popular method to deal with periodic structure problems consisting of dielectric materials and not including any perfect conductor with no-zero volume. The S-matrix method has recently proposed to analyze electromagnetic crystals consisting of discrete perfect conductors based on the mode-matching technique, in which the medium between two adjacent conductors must be homogenous. In order to overcome these difficulties, this paper will proposed a new formulation for analyzing electromagnetic problems of two dimensional periodic structure consisting of inhomogeneous dielectric materials and metallic conductors, by using Fourier series technique of sine and cosine function expansion, a window function, and S-matrix approach. The validity and fast convergence of the proposed method have been confirmed by a mass of numerical experimental.

    本文言語英語
    ホスト出版物のタイトルAPMC 2009 - Asia Pacific Microwave Conference 2009
    ページ984-987
    ページ数4
    DOI
    出版ステータス出版済み - 12月 1 2009
    イベントAsia Pacific Microwave Conference 2009, APMC 2009 - Singapore, シンガポール
    継続期間: 12月 7 200912月 10 2009

    出版物シリーズ

    名前APMC 2009 - Asia Pacific Microwave Conference 2009

    その他

    その他Asia Pacific Microwave Conference 2009, APMC 2009
    国/地域シンガポール
    CitySingapore
    Period12/7/0912/10/09

    !!!All Science Journal Classification (ASJC) codes

    • ハードウェアとアーキテクチャ
    • 電子工学および電気工学

    フィンガープリント

    「A new analysis of scattering problems for electromagnetic crystals consisting of inhomogeneous dielectric materials and conductors」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル