抄録
It is important to increase the productivity of every shipyard. Visualizing the actual work status during any industrial activity is essential. Work observation as one of the methods of industrial engineering has been applied in various fields in shipyards in Japan to increase productivity. However, current work observation requires both time and labor, and in some cases, shipyards hesitate to implement work observation. The aim of this study is to develop a methodology that uses deep neural networks to reduce the disadvantages of current work observation approaches while identifying work tasks and the accuracy of this observation.
本文言語 | 英語 |
---|---|
DOI | |
出版ステータス | 出版済み - 2021 |
イベント | SNAME Maritime Convention 2021, SMC 2021 - Providence, 米国 継続期間: 10月 27 2021 → 10月 29 2021 |
会議
会議 | SNAME Maritime Convention 2021, SMC 2021 |
---|---|
国/地域 | 米国 |
City | Providence |
Period | 10/27/21 → 10/29/21 |
!!!All Science Journal Classification (ASJC) codes
- 水圏科学
- マネジメント、モニタリング、政策と法律
- 水の科学と技術
- 開発
- 地理、計画および開発