A method of automated work observation for ship production using deep neural networks

Takeshi Shinoda, Takashi Tanaka, Hayato Okamoto, Daisuke Umemoto

研究成果: 会議への寄与タイプ学会誌査読

抄録

It is important to increase the productivity of every shipyard. Visualizing the actual work status during any industrial activity is essential. Work observation as one of the methods of industrial engineering has been applied in various fields in shipyards in Japan to increase productivity. However, current work observation requires both time and labor, and in some cases, shipyards hesitate to implement work observation. The aim of this study is to develop a methodology that uses deep neural networks to reduce the disadvantages of current work observation approaches while identifying work tasks and the accuracy of this observation.

本文言語英語
DOI
出版ステータス出版済み - 2021
イベントSNAME Maritime Convention 2021, SMC 2021 - Providence, 米国
継続期間: 10月 27 202110月 29 2021

会議

会議SNAME Maritime Convention 2021, SMC 2021
国/地域米国
CityProvidence
Period10/27/2110/29/21

!!!All Science Journal Classification (ASJC) codes

  • 水圏科学
  • マネジメント、モニタリング、政策と法律
  • 水の科学と技術
  • 開発
  • 地理、計画および開発

フィンガープリント

「A method of automated work observation for ship production using deep neural networks」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル