A hyperbolic analogue of the Rademacher symbol

研究成果: ジャーナルへの寄稿学術誌査読

抄録

One of the most famous results of Dedekind is the transformation law of logΔ(z). After a half-century, Rademacher modified Dedekind’s result and introduced an SL2(Z)-conjugacy class invariant (integer-valued) function Ψ(γ) called the Rademacher symbol. Inspired by Ghys’ work on modular knots, Duke–Imamoḡlu–Tóth (2017) constructed a hyperbolic analogue of the symbol. In this article, we study their hyperbolic analogue of the Rademacher symbol Ψγ(σ) and provide its two types of explicit formulas by comparing it with the classical Rademacher symbol. In association with it, we contrastively show Kronecker limit type formulas of the parabolic, elliptic, and hyperbolic Eisenstein series. These limits give harmonic, polar harmonic, and locally harmonic Maass forms of weight 2.

本文言語英語
ページ(範囲)2843-2886
ページ数44
ジャーナルMathematische Annalen
388
3
DOI
出版ステータス出版済み - 1月 2024

!!!All Science Journal Classification (ASJC) codes

  • 数学一般

フィンガープリント

「A hyperbolic analogue of the Rademacher symbol」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル