A Framework to Design Approximation Algorithms for Finding Diverse Solutions in Combinatorial Problems

Tesshu Hanaka, Masashi Kiyomi, Yasuaki Kobayashi, Yusuke Kobayashi, Kazuhiro Kurita, Yota Otachi

研究成果: 書籍/レポート タイプへの寄稿会議への寄与

6 被引用数 (Scopus)

抄録

Finding a single best solution is the most common objective in combinatorial optimization problems. However, such a single solution may not be applicable to real-world problems as objective functions and constraints are only “approximately” formulated for original real-world problems. To solve this issue, finding multiple solutions is a natural direction, and diversity of solutions is an important concept in this context. Unfortunately, finding diverse solutions is much harder than finding a single solution. To cope with the difficulty, we investigate the approximability of finding diverse solutions. As a main result, we propose a framework to design approximation algorithms for finding diverse solutions, which yields several outcomes including constant-factor approximation algorithms for finding diverse matchings in graphs and diverse common bases in two matroids and PTASes for finding diverse minimum cuts and interval schedulings.

本文言語英語
ホスト出版物のタイトルAAAI-23 Technical Tracks 4
編集者Brian Williams, Yiling Chen, Jennifer Neville
出版社AAAI Press
ページ3968-3976
ページ数9
ISBN(電子版)9781577358800
DOI
出版ステータス出版済み - 6月 27 2023
イベント37th AAAI Conference on Artificial Intelligence, AAAI 2023 - Washington, 米国
継続期間: 2月 7 20232月 14 2023

出版物シリーズ

名前Proceedings of the 37th AAAI Conference on Artificial Intelligence, AAAI 2023
37

会議

会議37th AAAI Conference on Artificial Intelligence, AAAI 2023
国/地域米国
CityWashington
Period2/7/232/14/23

!!!All Science Journal Classification (ASJC) codes

  • 人工知能

フィンガープリント

「A Framework to Design Approximation Algorithms for Finding Diverse Solutions in Combinatorial Problems」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル