A fast associative mining system based on search engine and concept graph for large-scale financial report texts

Kun Qian, Sachio Hirokawa, Kenji Ejima, Xiaoping Du

    研究成果: 書籍/レポート タイプへの寄稿会議への寄与

    5 被引用数 (Scopus)

    抄録

    Association mining is widely used in pattern discovery. For large scale financial textual data analysis, however, association mining is relatively less applied due to low efficiency in text manipulation. This paper presents a fast finance textual mining system, based on search engine and concept graph, for large scale financial textual association mining and visualization. Through the experiments on ten years' financial reports of 6,049 companies from NASDAQ and NYSE from 1999 to 2008, it testified that this system could rapidly extracting the characteristic words among millions of texts and visualizing them by concept graph in seconds.

    本文言語英語
    ホスト出版物のタイトルProceedings - 2010 2nd IEEE International Conference on Information and Financial Engineering, ICIFE 2010
    ページ675-679
    ページ数5
    DOI
    出版ステータス出版済み - 2010
    イベント2010 2nd IEEE International Conference on Information and Financial Engineering, ICIFE 2010 - Chongqing, 中国
    継続期間: 9月 17 20109月 19 2010

    出版物シリーズ

    名前Proceedings - 2010 2nd IEEE International Conference on Information and Financial Engineering, ICIFE 2010

    その他

    その他2010 2nd IEEE International Conference on Information and Financial Engineering, ICIFE 2010
    国/地域中国
    CityChongqing
    Period9/17/109/19/10

    !!!All Science Journal Classification (ASJC) codes

    • 会計
    • 財務

    フィンガープリント

    「A fast associative mining system based on search engine and concept graph for large-scale financial report texts」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル