A Contextual Approach for Improving Anomalous Network Traffic Flows Prediction

Eilaf M.A. Babai, Koji Okamura

研究成果: 書籍/レポート タイプへの寄稿会議への寄与

1 被引用数 (Scopus)

抄録

Network traffic prediction for small flow aggregations is crucial in automating future network management and optimization. However, fine-grained traffic prediction is challenging because some flows reveal anomalous behavior influenced by various factors. In this study, we present a contextual approach to improve the prediction of these flows. We leverage time and location context in IP flows to aggregate them into country traffic time series, then cluster the countries' traffic time series based on their spike patterns. For the cluster dominated by spikes, we investigate real events correlated to the spikes, model the impact of these events as weights, and use the weights to improve prediction performance on the traffic cluster. We evaluate our method on network traffic traces from a campus network and our dataset of university events. Our method improves the predictability of anomalous traffic flows by 6%. Our work showcases the potential of improving anomalous flow prediction by augmenting contextual data.

本文言語英語
ホスト出版物のタイトルProceedings - 2024 IEEE 48th Annual Computers, Software, and Applications Conference, COMPSAC 2024
編集者Hossain Shahriar, Hiroyuki Ohsaki, Moushumi Sharmin, Dave Towey, AKM Jahangir Alam Majumder, Yoshiaki Hori, Ji-Jiang Yang, Michiharu Takemoto, Nazmus Sakib, Ryohei Banno, Sheikh Iqbal Ahamed
出版社Institute of Electrical and Electronics Engineers Inc.
ページ2203-2208
ページ数6
ISBN(電子版)9798350376968
DOI
出版ステータス出版済み - 2024
イベント48th IEEE Annual Computers, Software, and Applications Conference, COMPSAC 2024 - Osaka, 日本
継続期間: 7月 2 20247月 4 2024

出版物シリーズ

名前Proceedings - 2024 IEEE 48th Annual Computers, Software, and Applications Conference, COMPSAC 2024

会議

会議48th IEEE Annual Computers, Software, and Applications Conference, COMPSAC 2024
国/地域日本
CityOsaka
Period7/2/247/4/24

!!!All Science Journal Classification (ASJC) codes

  • 人工知能
  • コンピュータ ネットワークおよび通信
  • コンピュータ サイエンスの応用
  • ソフトウェア
  • メディア記述
  • 計算数学
  • 教育

フィンガープリント

「A Contextual Approach for Improving Anomalous Network Traffic Flows Prediction」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル