A comprehensive investigation of r32 adsorption kinetics onto MSC30 activated carbon powder

Zhaosheng Yang, Muhammad Sultan, Muhammad Wakil Shahzad, Kyaw Thu, Takahiko Miyazaki

研究成果: ジャーナルへの寄稿学術誌査読

1 被引用数 (Scopus)

抄録

The thermogravimetric method was employed to measure the adsorption kinetics of difluoromethane (R32) on MSC30 activated carbon powder adsorbent over a wide range of temperatures (25 °C to 150 °C) and pressures (up to 3000 kPa). The accuracy of various adsorption kinetics models, including FD model, LDF model, semi-infinite model, and modified adsorption kinetics models, were assessed to compare their suitability for predicting the kinetics uptake of the MSC30/R32 working pair. Based on the fitting of the Arrhenius equation, the activation energy Ea and pre-exponential coefficient [Formula presented] were calculated to be 6262.37 (kJ·kg−1) and 0.00853 (s−1), respectively. The MSC30/R32 pair exhibited the highest diffusion time constant and adsorption rate among the common MSC30/refrigerant pairs. Furthermore, a new mass transfer coefficient model was proposed to enhance the accuracy and broaden the range of applicability of the existing model (Jribi model). Comprehensive validations were carried out using various adsorbent-adsorbate pairs over a wide temperature range. The Jribi model in conjunction with the proposed mass transfer coefficient model achieved high accuracy and precision in predicting the adsorption dynamics of diverse working pairs, both during the initial stage and near the saturation state. This study provides valuable insight into the adsorption kinetics analysis, which is essential in accurately simulating adsorption systems for various applications, including refrigeration and air conditioning.

本文言語英語
論文番号107148
ジャーナルInternational Communications in Heat and Mass Transfer
149
DOI
出版ステータス出版済み - 12月 2023

!!!All Science Journal Classification (ASJC) codes

  • 原子分子物理学および光学
  • 化学工学一般
  • 凝縮系物理学

フィンガープリント

「A comprehensive investigation of r32 adsorption kinetics onto MSC30 activated carbon powder」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル