A Branch-and-Bound Approach to Efficient Classification and Retrieval of Documents

Kotaro Ii, Hiroto Saigo, Yasuo Tabei

研究成果: 書籍/レポート タイプへの寄稿会議への寄与

抄録

Text classification and retrieval have been crucial tasks in natural language processing. In this paper, we present novel techniques for these tasks by leveraging the invariance of feature order to the evaluation results. Building on the assumption that text retrieval or classification models have already been constructed from the training documents, we propose efficient approaches that can restrict the search space spanned by the test documents. Our approach encompasses two key contributions. The first contribution introduces an efficient method for traversing a search tree, while the second contribution involves the development of novel pruning conditions. Through computational experiments using real-world datasets, we consistently demonstrate that the proposed approach outperforms the baseline method in various scenarios, showcasing its superior speed and efficiency.

本文言語英語
ホスト出版物のタイトルProceedings of the 13th International Conference on Pattern Recognition Applications and Methods
編集者Modesto Castrillon-Santana, Maria De Marsico, Ana Fred
出版社Science and Technology Publications, Lda
ページ205-214
ページ数10
ISBN(印刷版)9789897586842
DOI
出版ステータス出版済み - 2024
イベント13th International Conference on Pattern Recognition Applications and Methods, ICPRAM 2024 - Rome, イタリア
継続期間: 2月 24 20242月 26 2024

出版物シリーズ

名前International Conference on Pattern Recognition Applications and Methods
1
ISSN(電子版)2184-4313

会議

会議13th International Conference on Pattern Recognition Applications and Methods, ICPRAM 2024
国/地域イタリア
CityRome
Period2/24/242/26/24

!!!All Science Journal Classification (ASJC) codes

  • 人工知能
  • コンピュータ ビジョンおよびパターン認識

フィンガープリント

「A Branch-and-Bound Approach to Efficient Classification and Retrieval of Documents」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル