TY - JOUR
T1 - 低合金鋼ラインパイプの低 H2S 濃度サワー環境下における硫化物応力腐食割れ挙動
AU - Shimamura, Junji
AU - Morikawa, Tatsuya
AU - YamaSaki, Shigeto
AU - Tanaka, Masaki
N1 - Publisher Copyright:
© 2022 The Iron and Steel Institute of Japan. This is an open access article under the terms of the Creative Commons Attribution-NonCommercialNoDerivatives license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
PY - 2022/9
Y1 - 2022/9
N2 - Resistance to Sulfide Stress Cracking (SSC) caused by local hard zones of pipe inner surface has been required in low alloy linepipe steel. In this study, using two samples with different surface hardness, the detailed SSC initiation behavior was clarified by four-point bend (4PB) SSC tests in which immersion time and applied stress were changed in a sour environment containing 0.15 bar hydrogen sulfide (H2S) gas. SSC cracks occurred when the applied stress was higher than 90% actual yield strength (AYS) in higher surface hardness samples over 270 HV0.1. From the fracture surface observation of SSC crack sample, it was found that the mechanism gradually shifted from active path corrosion (APC) to hydrogen embrittlement (HE), and that the influence of APC mechanism remained partially in the process of SSC initiation at the tip of corrosion pit or groove. The polarization measurement in the 4PB SSC test showed that the anodic and cathodic reactions (especially cathodic reactions) were activated when the applied stress was 90% AYS or higher. The FEM coupled analysis simulating the stress and strain concentration at the bottom tip of the corrosion groove and the hydrogen diffusion and accumulation was carried out. The principal stress in the tensile direction showed the maximum value at 0.04-0.06 mm away from the tip of the corrosion groove, and the hydrogen accumulation became the maximum. It was analytically found that the SSC crack initiated and propagated with HE mechanism dominated type when the threshold value of about 0.82 ppm is exceeded.
AB - Resistance to Sulfide Stress Cracking (SSC) caused by local hard zones of pipe inner surface has been required in low alloy linepipe steel. In this study, using two samples with different surface hardness, the detailed SSC initiation behavior was clarified by four-point bend (4PB) SSC tests in which immersion time and applied stress were changed in a sour environment containing 0.15 bar hydrogen sulfide (H2S) gas. SSC cracks occurred when the applied stress was higher than 90% actual yield strength (AYS) in higher surface hardness samples over 270 HV0.1. From the fracture surface observation of SSC crack sample, it was found that the mechanism gradually shifted from active path corrosion (APC) to hydrogen embrittlement (HE), and that the influence of APC mechanism remained partially in the process of SSC initiation at the tip of corrosion pit or groove. The polarization measurement in the 4PB SSC test showed that the anodic and cathodic reactions (especially cathodic reactions) were activated when the applied stress was 90% AYS or higher. The FEM coupled analysis simulating the stress and strain concentration at the bottom tip of the corrosion groove and the hydrogen diffusion and accumulation was carried out. The principal stress in the tensile direction showed the maximum value at 0.04-0.06 mm away from the tip of the corrosion groove, and the hydrogen accumulation became the maximum. It was analytically found that the SSC crack initiated and propagated with HE mechanism dominated type when the threshold value of about 0.82 ppm is exceeded.
UR - http://www.scopus.com/inward/record.url?scp=85139782240&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85139782240&partnerID=8YFLogxK
U2 - 10.2355/tetsutohagane.TETSU-2022-013
DO - 10.2355/tetsutohagane.TETSU-2022-013
M3 - 学術誌
AN - SCOPUS:85139782240
SN - 0021-1575
VL - 108
SP - 642
EP - 655
JO - Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan
JF - Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan
IS - 9
ER -