Wind-Tunnel Study of Scalar Transfer Phenomena for Surfaces of Block Arrays and Smooth Walls with Dry Patches

Research output: Contribution to journalArticlepeer-review

9 Citations (Scopus)


We report the result of a wind-tunnel experiment to measure the scalar transfer efficiency of three types of surfaces, wet street surfaces of cube arrays, wet smooth surfaces with dry patches, and fully wet smooth surfaces, to examine the effects of roughness topography and scalar source allocation. Scalar transfer coefficients defined by the source area CEwet for an underlying wet street surface of dry block arrays show a convex trend against the block density λp. Comparison with past data, and results for wet smooth surfaces including dry patches, reveal that the positive peak of CEwet with increasing λp is caused by reduced horizontal advection due to block roughness and enhanced evaporation due to a heterogeneous scalar source distribution. In contrast, scalar transfer coefficients defined by a lot-area including wet and dry areas CElot for smooth surfaces with dry patches indicate enhanced evaporation compared to the fully wet smooth surface (the oasis effect) for all three conditions of dry plan-area ratio up to 31 %. Relationships between the local Sherwood and Reynolds numbers derived from experimental data suggest that attenuation of CEwet for a wet street of cube arrays against streamwise distance is weaker than for a wet smooth surface because of canopy flow around the blocks. Relevant parameters of ratio of roughness length for momentum to scalar B-1 were calculated from observational data. The result implies that B-1 possibly increases with block roughness, and decreases with the partitioning of the scalar boundary layer because of dry patches.

Original languageEnglish
Pages (from-to)219-236
Number of pages18
JournalBoundary-Layer Meteorology
Issue number2
Publication statusPublished - Nov 29 2015

All Science Journal Classification (ASJC) codes

  • Atmospheric Science


Dive into the research topics of 'Wind-Tunnel Study of Scalar Transfer Phenomena for Surfaces of Block Arrays and Smooth Walls with Dry Patches'. Together they form a unique fingerprint.

Cite this