What factors determine the number of nonmuscle myosin II in the sarcomeric unit of stress fibers?

Takumi Saito, Wenjing Huang, Tsubasa S. Matsui, Masahiro Kuragano, Masayuki Takahashi, Shinji Deguchi

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)


Actin stress fibers (SFs), a contractile apparatus in nonmuscle cells, possess a contractile unit that is apparently similar to the sarcomere of myofibrils in muscles. The function of SFs has thus often been addressed based on well-characterized properties of muscles. However, unlike the fixed number of myosin molecules in myofibrils, the number of nonmuscle myosin II (NMII) within the contractile sarcomeric unit in SFs is quite low and variable for some reason. Here we address what factors may determine the specific number of NMII in SFs. We suggest with a theoretical model that the number lies just in between the function of SFs for bearing cellular tension under static conditions and for promptly disintegrating upon forced cell shortening. We monitored shortening-induced disintegration of SFs in human osteosarcoma U2OS cells expressing mutants of myosin regulatory light chain that virtually regulates the interaction of NMII with actin filaments, and the behaviors observed were indeed consistent with the theoretical consequences. This situation-specific nature of SFs may allow nonmuscle cells to respond adaptively to mechanical stress to circumvent activation of pro-inflammatory signals as previously indicated, i.e., a behavior distinct from that of muscles that are basically specialized for exhibiting contractile activity.

Original languageEnglish
Pages (from-to)155-166
Number of pages12
JournalBiomechanics and Modeling in Mechanobiology
Issue number1
Publication statusPublished - Feb 2021
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Biotechnology
  • Modelling and Simulation
  • Mechanical Engineering


Dive into the research topics of 'What factors determine the number of nonmuscle myosin II in the sarcomeric unit of stress fibers?'. Together they form a unique fingerprint.

Cite this