Abstract
Controlled and uniform assembly of "bottom-up" nanowire (NW) materials with high scalability presents one of the significant bottleneck challenges facing the integration of nanowires for electronic applications. Here, we demonstrate wafer-scale assembly of highly ordered, dense, and regular arrays of NWs with high uniformity and reproducibility through a simple contact printing process. The assembled NW pitch is shown to be readily modulated through the surface chemical treatment of the receiver substrate, with the highest density approaching ∼8 NW/μm, ∼95% directional alignment, and wafer-scale uniformity. Such fine control in the assembly is attained by applying a lubricant during the contact printing process which significantly minimizes the NW-NW mechanical interactions, therefore enabling well-controlled transfer of nanowires through surface chemical binding interactions. Furthermore, we demonstrate that our printing approach enables large-scale integration of NW arrays for various device structures on both rigid silicon and flexible plastic substrates, with a controlled semiconductor channel width ranging from a single NW (∼10 nm) up to ∼250 μm, consisting of a parallel array of over 1250 NWs and delivering over 1 mA of ON current.
Original language | English |
---|---|
Pages (from-to) | 20-25 |
Number of pages | 6 |
Journal | Nano Letters |
Volume | 8 |
Issue number | 1 |
DOIs | |
Publication status | Published - Jan 2008 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Bioengineering
- Chemistry(all)
- Materials Science(all)
- Condensed Matter Physics
- Mechanical Engineering