Abstract
Volatile-char interactions are an important consideration in the design and operation of a gasifier. This study aims to investigate the effects of volatile-char interactions on the in situ char-steam reactivity at 800 °C and the ex-situ char-O2 reactivity at 400 °C. A Victorian brown coal was gasified in 15% steam at 800 °C in a one-stage novel fluidised-bed/fixed-bed quartz reactor, in which the extent of volatile-char interactions could be controlled. The chars after varying extents of volatile-char interactions and/or varying extents of char conversion in steam were also collected for the measurement of their reactivity with air at 400 °C in a thermogravimetric analyser. Our results show that the char-steam gasification reactions were greatly inhibited by the volatile-char interactions. It is believed that the H radicals generated from the thermal cracking/reforming of volatiles slowed the char gasification in three ways: occupying the char reactive sites, causing the char structure to re-arrange/condense and enhancing the release of catalytic species inherently present in the brown coal. The importance of volatile-char interactions to char-steam reactivity was further confirmed by the char-air reactivity.
Original language | English |
---|---|
Pages (from-to) | 1655-1661 |
Number of pages | 7 |
Journal | Fuel |
Volume | 90 |
Issue number | 4 |
DOIs | |
Publication status | Published - Apr 2011 |
All Science Journal Classification (ASJC) codes
- Chemical Engineering(all)
- Fuel Technology
- Energy Engineering and Power Technology
- Organic Chemistry