Viscoelastic response of a model endothelial glycocalyx

Nadja Nijenhuis, Daisuke Mizuno, Jos A.E. Spaan, Christoph F. Schmidt

Research output: Contribution to journalArticlepeer-review

26 Citations (Scopus)


Many cells cover themselves with a multifunctional polymer coat, the pericellular matrix (PCM), to mediate mechanical interactions with the environment. A particular PCM, the endothelial glycocalyx (EG), is formed by vascular endothelial cells at their luminal side, forming a mechanical interface between the flowing blood and the endothelial cell layer. The glycosaminoglycan (GAG) hyaluronan (HA) is involved in the main functions of the EG, mechanotransduction of fluid shear stress and molecular sieving. HA, due to its length, is the only GAG in the EG or any other PCM able to form an entangled network. The mechanical functions of the EG are, however, impaired when any one of its components is removed. We here used microrheology to measure the effect of the EG constituents heparan sulfate, chondroitin sulfate, whole blood plasma and albumin on the high-bandwidth mechanical properties of a HA solution. Furthermore, we probed the effect of the hyaldherin aggrecan, a constituent of the PCM of chondrocytes, and very similar to versican (present in the PCM of various cells, and possibly in the EG). We show that components directly interacting with HA (chondroitin sulfate and aggrecan) can increase the viscoelastic shear modulus of the polymer composite.

Original languageEnglish
Article number025014
JournalPhysical Biology
Issue number2
Publication statusPublished - 2009

All Science Journal Classification (ASJC) codes

  • Biophysics
  • Structural Biology
  • Molecular Biology
  • Cell Biology


Dive into the research topics of 'Viscoelastic response of a model endothelial glycocalyx'. Together they form a unique fingerprint.

Cite this