TY - JOUR
T1 - Using dynamical mode decomposition to extract the limit cycle dynamics of modulated turbulence in a plasma simulation
AU - Sasaki, M.
AU - Kawachi, Y.
AU - Dendy, R. O.
AU - Arakawa, H.
AU - Kasuya, N.
AU - Kin, F.
AU - Yamasaki, K.
AU - Inagaki, S.
N1 - Funding Information:
M Sasaki Y Kawachi R O Dendy H Arakawa N Kasuya F Kin K Yamasaki S Inagaki M Sasaki Y Kawachi R O Dendy H Arakawa N Kasuya F Kin K Yamasaki S Inagaki Research Institute for Applied Mechanics, Kyushu University, Kasuga 816-8580, Japan Research Center for Plasma Turbulence, Kyushu University, Kasuga 816-8580, Japan Centre for Fusion, Space and Astrophysics, Department of Physics, Warwick University, Coventry CV4 7AL, United Kingdom Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga 816-8580, Japan CCFE, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB, United Kingdom Institute of Science and Engineering, Academic Assembly, Shimane University, Matsue 690-8504, Japan National Institutes for Quantum and Radiological Science and Technology, Naka 311-0193, Japan M Sasaki, Y Kawachi, R O Dendy, H Arakawa, N Kasuya, F Kin, K Yamasaki and S Inagaki 2019-11-01 2019-10-11 14:13:00 cgi/release: Article released bin/incoming: New from .zip Japan Society for the Promotion of Science https://doi.org/10.13039/501100001691 JP15H02335 JP16K18335 JP17H06089 the collaboration programs of NIFS NIFS17KNST122 NIFS18KNST137 NIFS19KNST151 Asada Science Foundation Progress 100 of Kyushu University NB80645028 H2020 Euratom https://doi.org/10.13039/100010687 633053 the RCUK Energy Programme EP/P012450/1 yes The novel technique of dynamical mode decomposition (DMD) is applied to the outputs of a numerical simulation of Kelvin–Helmholtz turbulence in a cylindical plasma, so as to capture and quantify the time evolution of the dominant nonlinear structures. Empirically, these structures comprise rotationally symmetric deformations together with spiral patterns, and they are found to be identified as the main modes of the DMD. A new method to calculate the time evolution of DMD mode amplitudes is proposed, based on convolution-type correlation integrals, and then applied to the simulation outputs in a limit cycle regime. The resulting time traces capture the essential physics far better than Fourier techniques applied to the same data. � 2019 IOP Publishing Ltd [1] Connor J W 1998 Plasma Phys. Control. Fusion 40 531 10.1088/0741-3335/40/5/002 Connor J W Plasma Phys. Control. Fusion 0741-3335 40 5 002 1998 531 [2] Sarazin Y et al 1998 Phys. Plasmas 5 4214 10.1063/1.873157 Sarazin Y et al Phys. Plasmas 1070-664X 5 1998 4214 [3] Diamond P H et al 2005 Plasma Phys. Control. Fusion 47 R35 10.1088/0741-3335/47/5/R01 Diamond P H et al Plasma Phys. Control. Fusion 0741-3335 47 5 R01 2005 R35 [4] Krasheninnikov S I et al 2017 Nucl. Fusion 57 102010 10.1088/1741-4326/aa6d25 Krasheninnikov S I et al Nucl. Fusion 0029-5515 57 10 102010 2017 [5] Wagner F et al 1982 Phys. Rev. Lett. 49 1408 10.1103/PhysRevLett.49.1408 Wagner F et al Phys. Rev. Lett. 0031-9007 49 1982 1408 [6] Jovanovic M R et al 2014 Phys. Fluids 26 024103 10.1063/1.4863670 Jovanovic M R et al Phys. Fluids 26 024103 2014 [7] Taylor R et al 2018 Rev. Sci. Instrum. 89 053501 10.1063/1.5027419 Taylor R et al Rev. Sci. Instrum. 89 053501 2018 [8] Hemati M S et al 2014 Phys. Fluids 26 111701 10.1063/1.4901016 Hemati M S et al Phys. Fluids 26 111701 2014 [9] Kasuya N et al 2008 Phys. Plasmas 15 052302 10.1063/1.2912461 Kasuya N et al Phys. Plasmas 15 052302 2008 [10] Sasaki M et al 2017 Phys. Plasmas 24 112103 10.1063/1.5000343 Sasaki M et al Phys. Plasmas 24 112103 2017 [11] Inagaki S et al 2016 Sci. Rep. 6 22189 10.1038/srep22189 Inagaki S et al Sci. Rep. 6 2016 22189 [12] David P A et al 2016 Phys. Plasmas 23 103511 10.1063/1.4964905 David P A et al Phys. Plasmas 23 103511 2016 [13] Sasaki M et al 2019 Phys. Plasmas 26 042305 10.1063/1.5085372 Sasaki M et al Phys. Plasmas 26 042305 2019 [14] Nishino N et al 2010 J. Plasma Fusion Res. 86 648 Nishino N et al J. Plasma Fusion Res. 0918-7928 86 2010 648 [15] Ohdachi S et al 2003 Rev. Sci. Instrum. 74 2136 10.1063/1.1537449 Ohdachi S et al Rev. Sci. Instrum. 74 2003 2136 [16] del-Castillo-Negrete D et al 2007 J. Comp. Phys 222 265 10.1016/j.jcp.2006.07.022 del-Castillo-Negrete D et al J. Comp. Phys 0021-9991 222 2007 265 [17] Beyer P et al 2000 Phys. Rev. E 61 813 10.1103/PhysRevE.61.813 Beyer P et al Phys. Rev. E 1063-651X 61 2000 813 [18] Zweben S J et al 2002 Phys. Plasmas 9 1981 10.1063/1.1445179 Zweben S J et al Phys. Plasmas 9 2002 1981 [19] Maqueda R J et al 2003 Rev. Sci. Instrum. 74 2020 10.1063/1.1535249 Maqueda R J et al Rev. Sci. Instrum. 74 2003 2020 [20] Myra J R et al 2018 Plasma Phys. Control. Fusion 60 075015 10.1088/1361-6587/aac4fc Myra J R et al Plasma Phys. Control. Fusion 0741-3335 60 7 075015 2018 [21] McKee G R et al 2004 Rev. Sci. Instrum. 75 3490 10.1063/1.1790043 McKee G R et al Rev. Sci. Instrum. 75 2004 3490 [22] Fenzi C et al 2001 Rev. Sci. Instrum. 72 988 10.1063/1.1321739 Fenzi C et al Rev. Sci. Instrum. 72 2001 988 [23] Iraji D et al 2010 Phys. Plasmas 17 122304 10.1063/1.3523052 Iraji D et al Phys. Plasmas 17 122304 2010 [24] Fujisawa A et al 2016 Plasma Phys. Control. Fusion 58 025005 10.1088/0741-3335/58/2/025005 Fujisawa A et al Plasma Phys. Control. Fusion 0741-3335 58 2 025005 2016
Publisher Copyright:
© 2019 IOP Publishing Ltd.
PY - 2019/10/11
Y1 - 2019/10/11
N2 - The novel technique of dynamical mode decomposition (DMD) is applied to the outputs of a numerical simulation of Kelvin-Helmholtz turbulence in a cylindical plasma, so as to capture and quantify the time evolution of the dominant nonlinear structures. Empirically, these structures comprise rotationally symmetric deformations together with spiral patterns, and they are found to be identified as the main modes of the DMD. A new method to calculate the time evolution of DMD mode amplitudes is proposed, based on convolution-type correlation integrals, and then applied to the simulation outputs in a limit cycle regime. The resulting time traces capture the essential physics far better than Fourier techniques applied to the same data.
AB - The novel technique of dynamical mode decomposition (DMD) is applied to the outputs of a numerical simulation of Kelvin-Helmholtz turbulence in a cylindical plasma, so as to capture and quantify the time evolution of the dominant nonlinear structures. Empirically, these structures comprise rotationally symmetric deformations together with spiral patterns, and they are found to be identified as the main modes of the DMD. A new method to calculate the time evolution of DMD mode amplitudes is proposed, based on convolution-type correlation integrals, and then applied to the simulation outputs in a limit cycle regime. The resulting time traces capture the essential physics far better than Fourier techniques applied to the same data.
UR - http://www.scopus.com/inward/record.url?scp=85074954073&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85074954073&partnerID=8YFLogxK
U2 - 10.1088/1361-6587/ab471b
DO - 10.1088/1361-6587/ab471b
M3 - Article
AN - SCOPUS:85074954073
SN - 0741-3335
VL - 61
JO - Plasma Physics and Controlled Fusion
JF - Plasma Physics and Controlled Fusion
IS - 11
M1 - 112001
ER -