Unusual low-temperature phase in VO2 nanoparticles

Y. Ishiwata, S. Suehiro, M. Hagihala, X. G. Zheng, T. Kawae, O. Morimoto, Y. Tezuka

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)


We present a systematic investigation of the crystal and electronic structures and the magnetic properties above and below the metal-insulator transition of ball-milled VO2 nanoparticles and VO2 microparticles. For this research, we performed a Rietveld analysis of synchrotron radiation x-ray diffraction data, OK x-ray absorption spectroscopy, V L3 resonant inelastic x-ray scattering, and magnetic-susceptibility measurements. This study reveals an unusual low-temperature phase that involves the formation of an elongated and less-tilted V-V pair, a narrowed energy gap, and an induced paramagnetic contribution from the nanoparticles. We show that the change in the crystal structure is consistent with the change in the electronic states around the Fermi level, which leads us to suggest that the Peierls mechanism contributes to the energy splitting of the a1g state. Furthermore, we find that the high-temperature rutile structure of the nanoparticles is almost identical to that of the microparticles.

Original languageEnglish
Article number115404
JournalPhysical Review B - Condensed Matter and Materials Physics
Issue number11
Publication statusPublished - Sept 3 2010

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics


Dive into the research topics of 'Unusual low-temperature phase in VO2 nanoparticles'. Together they form a unique fingerprint.

Cite this