Unsteady dynamic crack propagation in a brittle polymer

K. Arakawa, T. Mada

    Research output: Contribution to journalArticlepeer-review

    37 Citations (Scopus)


    Dynamic crack propagation in a brittle polymer, poly(methyl-methacrylate) (PMMA), was studied using the method of caustics in combination with a Cranz-Schardin high-speed camera. Four different types of specimen geometry and loading method were employed to achieve the crack acceleration, deceleration, and/or reacceleration processes in one fracture event. The dynamic stress intensity factor K ID and crack velocity were obtained in the course of the crack propagation and the corresponding relationship was determined. The effect of the crack acceleration and deceleration on the K ID -velocity relationships was as follows: (1) the variations of K ID and the velocity were strongly influenced by the specimen geometry and loading method; (2) the velocity change was qualitatively in accord with K ID; (3) K ID for a constant crack velocity was larger when the crack decelerated than it was when the crack accelerated or reaccelerated; (4) K ID for an acceleration-free crack was uniquely related to the velocity; and (5) K ID could be expressed as two parametric functions of the velocity and acceleration.

    Original languageEnglish
    Pages (from-to)609-615
    Number of pages7
    JournalExperimental Mechanics
    Issue number5
    Publication statusPublished - Oct 2007

    All Science Journal Classification (ASJC) codes

    • Aerospace Engineering
    • Mechanics of Materials
    • Mechanical Engineering


    Dive into the research topics of 'Unsteady dynamic crack propagation in a brittle polymer'. Together they form a unique fingerprint.

    Cite this