Uniform analytic properties of representation zeta functions of finitely generated nilpotent groups

Duong H. Dung, Christopher Voll

Research output: Contribution to journalArticlepeer-review

11 Citations (Scopus)

Abstract

Let G be a finitely generated nilpotent group. The representation zeta function ζG(s) of G enumerates twist isoclasses of finite-dimensional irreducible complex representations of G. We prove that ζG(s) has rational abscissa of convergence α(G) and may be meromorphically continued to the left of α(G) and that, on the line {s ∈ ℂ | Re(s) = α(G)}, the continued function is holomorphic except for a pole at s = α(G). A Tauberian theorem yields a precise asymptotic result on the representation growth of G in terms of the position and order of this pole. We obtain these results as a consequence of a result establishing uniform analytic properties of representation zeta functions of torsion-free finitely generated nilpotent groups of the form G(O), where G is a unipotent group scheme defined in terms of a nilpotent Lie lattice over the ring O of integers of a number field. This allows us to show, in particular, that the abscissae of convergence of the representation zeta functions of such groups and their pole orders are invariants of G, independent of O.

Original languageEnglish
Pages (from-to)6327-6349
Number of pages23
JournalTransactions of the American Mathematical Society
Volume369
Issue number9
DOIs
Publication statusPublished - 2017

All Science Journal Classification (ASJC) codes

  • Mathematics(all)
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Uniform analytic properties of representation zeta functions of finitely generated nilpotent groups'. Together they form a unique fingerprint.

Cite this