Ultra-wide-band millimeter-wave generator using spin torque oscillator with strong interlayer exchange couplings

Yuichiro Kurokawa, Keisuke Yamada, Tomohiro Taniguchi, Shu Horiike, Terumitsu Tanaka, Hiromi Yuasa

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)

Abstract

Recent increased development interest in millimeter-wave oscillator devices has necessitated realization of small oscillators with high frequency, wide frequency tunability, and room-temperature operation. Spin-torque oscillators (STOs) are fascinating candidates for such applications because of their nanometer size and suitability for room-temperature operation. However, their oscillation frequency and tunable range are limited to the order of 100 MHz–10 GHz. Here, we propose use of bilinear (J1) and biquadratic (J2) interlayer exchange couplings between ferromagnets in STOs to overcome these problems. The bilinear coupling contributes to oscillation frequency enhancement, whereas the biquadratic coupling facilitates frequency tunability via a current. Using micromagnetic simulation with parameters estimated from a material with small saturation magnetization, for J1 = 0 and J2 = − 1.0 mJ/m2, respectively, we find that the STO exhibits high frequency from 23 to 576 GHz and that its tunability reaches 61 GHz/(1011 A/m2) for current densities of − 0.5 to − 9.5 × 1011 A/m2. An analytical theory based on the macrospin model is also developed, which exhibits good quantitative agreement with the micromagnetic simulations. These results introduce new possibilities for spintronics applications in high-frequency devices such as next-generation mobile communications.

Original languageEnglish
Article number10849
JournalScientific reports
Volume12
Issue number1
DOIs
Publication statusPublished - Dec 2022

All Science Journal Classification (ASJC) codes

  • General

Fingerprint

Dive into the research topics of 'Ultra-wide-band millimeter-wave generator using spin torque oscillator with strong interlayer exchange couplings'. Together they form a unique fingerprint.

Cite this