TY - JOUR
T1 - Ubiquitin E3 Ligase LNX2 is Critical for Osteoclastogenesis In Vitro by Regulating M-CSF/RANKL Signaling and Notch2
AU - Zhou, Jian
AU - Fujiwara, Toshifumi
AU - Ye, Shiqiao
AU - Li, Xiaolin
AU - Zhao, Haibo
N1 - Publisher Copyright:
© 2015, Springer Science+Business Media New York.
PY - 2015/5/1
Y1 - 2015/5/1
N2 - The Notch signaling pathway plays a crucial role in skeletal development and homeostasis by regulating the proliferation and differentiation of osteoblasts and osteoclasts. However, the molecular mechanisms modulating the level and activity of Notch receptors in bone cells remain unknown. In this study, we uncovered that LNX2, an E3 ubiquitin ligase and Notch inhibitor Numb binding protein, was up-regulated during osteoclast differentiation. Knocking-down LNX2 expression in bone marrow macrophages by lentivirus-mediated short hairpin RNAs markedly inhibited osteoclast formation. Decreased LNX2 expression attenuated macrophage colony-stimulating factor (M-CSF)-induced ERK and AKT activation and RANKL-stimulated activation of NF-κB and JNK pathways; therefore, accelerated osteoclast apoptosis. Additionally, loss of LNX2 led to an increased accumulation of Numb, which promoted the degradation of Notch and caused a reduction of the expression of the Notch downstream target gene, Hes1. We conclude that LNX2 regulates M-CSF/RANKL and the Notch signaling pathways during osteoclastogenesis.
AB - The Notch signaling pathway plays a crucial role in skeletal development and homeostasis by regulating the proliferation and differentiation of osteoblasts and osteoclasts. However, the molecular mechanisms modulating the level and activity of Notch receptors in bone cells remain unknown. In this study, we uncovered that LNX2, an E3 ubiquitin ligase and Notch inhibitor Numb binding protein, was up-regulated during osteoclast differentiation. Knocking-down LNX2 expression in bone marrow macrophages by lentivirus-mediated short hairpin RNAs markedly inhibited osteoclast formation. Decreased LNX2 expression attenuated macrophage colony-stimulating factor (M-CSF)-induced ERK and AKT activation and RANKL-stimulated activation of NF-κB and JNK pathways; therefore, accelerated osteoclast apoptosis. Additionally, loss of LNX2 led to an increased accumulation of Numb, which promoted the degradation of Notch and caused a reduction of the expression of the Notch downstream target gene, Hes1. We conclude that LNX2 regulates M-CSF/RANKL and the Notch signaling pathways during osteoclastogenesis.
UR - http://www.scopus.com/inward/record.url?scp=84939996057&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84939996057&partnerID=8YFLogxK
U2 - 10.1007/s00223-015-9967-7
DO - 10.1007/s00223-015-9967-7
M3 - Article
C2 - 25712254
AN - SCOPUS:84939996057
SN - 0171-967X
VL - 96
SP - 465
EP - 475
JO - Calcified Tissue International
JF - Calcified Tissue International
IS - 5
ER -