TY - JOUR
T1 - Tumor-derived interleukin-1 promotes lymphangiogenesis and lymph node metastasis through M2-type macrophages
AU - Watari, Kosuke
AU - Shibata, Tomohiro
AU - Kawahara, Akihiko
AU - Sata, Ken Ichi
AU - Nabeshima, Hiroshi
AU - Shinoda, Ai
AU - Abe, Hideyuki
AU - Azuma, Koichi
AU - Murakami, Yuichi
AU - Izumi, Hiroto
AU - Takahashi, Takashi
AU - Kage, Masayoshi
AU - Kuwano, Michihiko
AU - Ono, Mayumi
PY - 2014/6/12
Y1 - 2014/6/12
N2 - Tumors formed by a highly metastatic human lung cancer cell line are characterized by activated signaling via vascular endothelial growth factor (VEGF)-C through its receptor (VEGFR-3) and aggressive lymph node metastasis. In this study, we examined how these highly metastatic cancers acquired aggressive lymph node metastasis. Compared with their lower metastatic counterparts, the highly metastatic tumors formed by this cell line expressed higher amounts of interleukin (IL)-1α, with similarly augmented expression of IL-1α and IL-1β by tumor stromal cells and of VEGF-A and VEGF-C by tumorassociated macrophages. These tumor-associated macrophages were mainly of the M2 type. Administration of a macrophage-targeting drug suppressed the production of these potent angiogenic and lymphangiogenic factors, resulting in decreased tumor growth, angiogenesis, lymphangiogenesis, and lymph node metastasis. In Matrigel plug assays, the highly metastatic cells formed tumors that were extensively infiltrated by M2-type macrophages and exhibited enhanced angiogenesis and lymphangiogenesis. All of these responses were suppressed by the IL-1 receptor (IL-1R) antagonist anakinra. Thus, the IL-1α-driven inflammatory activation of angiogenesis and lymphangiogenesis seems to provide a highly metastatic tumor microenvironment favorable for lymph node metastasis through cross-talk with macrophages. Accordingly, the IL-1R/M2-type macrophage axis may be a good therapeutic target for patients with this form of lung cancer.
AB - Tumors formed by a highly metastatic human lung cancer cell line are characterized by activated signaling via vascular endothelial growth factor (VEGF)-C through its receptor (VEGFR-3) and aggressive lymph node metastasis. In this study, we examined how these highly metastatic cancers acquired aggressive lymph node metastasis. Compared with their lower metastatic counterparts, the highly metastatic tumors formed by this cell line expressed higher amounts of interleukin (IL)-1α, with similarly augmented expression of IL-1α and IL-1β by tumor stromal cells and of VEGF-A and VEGF-C by tumorassociated macrophages. These tumor-associated macrophages were mainly of the M2 type. Administration of a macrophage-targeting drug suppressed the production of these potent angiogenic and lymphangiogenic factors, resulting in decreased tumor growth, angiogenesis, lymphangiogenesis, and lymph node metastasis. In Matrigel plug assays, the highly metastatic cells formed tumors that were extensively infiltrated by M2-type macrophages and exhibited enhanced angiogenesis and lymphangiogenesis. All of these responses were suppressed by the IL-1 receptor (IL-1R) antagonist anakinra. Thus, the IL-1α-driven inflammatory activation of angiogenesis and lymphangiogenesis seems to provide a highly metastatic tumor microenvironment favorable for lymph node metastasis through cross-talk with macrophages. Accordingly, the IL-1R/M2-type macrophage axis may be a good therapeutic target for patients with this form of lung cancer.
UR - http://www.scopus.com/inward/record.url?scp=84903398786&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84903398786&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0099568
DO - 10.1371/journal.pone.0099568
M3 - Article
C2 - 24924428
AN - SCOPUS:84903398786
SN - 1932-6203
VL - 9
JO - PloS one
JF - PloS one
IS - 6
M1 - e99568
ER -