Transparent organic photodiodes stacked with electroluminescence devices

Takahiro Komatsu, Kei Sakanoue, Katsuhiko Fujita, Tetsuo Tsutsui

Research output: Contribution to journalConference articlepeer-review

3 Citations (Scopus)


Stacked devices that consisted of transparent organic photodiodes (TOPDs) and organic electroluminescence devices (OELs) were demonstrated. TOPDs were prepared by poly-(2-methoxy-5- (2'-ethylhexyloxy)-1,4-phenylene vinylene (MEH-PPV) and [6,6]-phenyl C61-butyric acid methyl ester (PCBM) blend films as an active layer and transparent Au cathode (10 nm thick). These TOPDs showed about 45 % transmittance on average in visible light region (380-780 nm) and good correlation between incident light intensity and output photocurrent. Based on these results, the stacked devices were prepared by introducing OELs on TOPDs through a SiO insulating layer. The structure of OELs was ITO/Carbon/TPD/Alq3/LiF/Al. These stacked devices work as light emitting devices and also photo diodes. Since TOPDs have transparency, OELs can illuminate a paper put on the glass substrate through TOPDs and TOPDs can receive reflective light from the paper. Although the TOPDs also absorb light from OELs directly, the output signals from TOPDs changed according to the black and white pattern of the paper. These results show that the devices act as an image sensor having light emitting layer and light receiving layer in a same area.

Original languageEnglish
Article number593816
Pages (from-to)1-8
Number of pages8
JournalProceedings of SPIE - The International Society for Optical Engineering
Publication statusPublished - 2005
EventOrganic Photovoltaics VI - San Diego, CA, United States
Duration: Aug 2 2005Aug 4 2005

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering


Dive into the research topics of 'Transparent organic photodiodes stacked with electroluminescence devices'. Together they form a unique fingerprint.

Cite this