Transient temperature and pressure behavior of high-pressure 100 MPa hydrogen during discharge through orifices

N. Sakoda, K. Onoue, T. Kuroki, K. Shinzato, M. Kohno, M. Monde, Y. Takata

Research output: Contribution to journalArticlepeer-review

17 Citations (Scopus)

Abstract

High-pressure hydrogen at a maximum of 100 MPa in a 1-L-volume vessel is discharged through 0.1-mm- and 0.2-mm-diameter orifices that imitate cracks, and the transient temperature and pressure behavior of the hydrogen in the vessel is presented. The hydrogen at the initial pressure of 100 MPa during its discharge through the ϕ 0.2-mm orifice reaches half of the initial pressure after 16 s, while it takes approximately nine times longer for the ϕ 0.1-mm orifice to reach half of the initial pressure. We theoretically calculate the transient temperature and pressure according to the fundamental equations based on the mass and energy conservations using an accurate equation of state for hydrogen. The actual flow rate through an orifice is generally smaller than the theoretically calculated flow rate because of the contraction flow. Therefore, in this study, we adopt the effective diameters of the orifices instead of the actual diameters, and from comparisons with the experimental pressure, we estimate them to be 0.6 and 0.9 of the actual diameters for the ϕ 0.1-mm and ϕ 0.2-mm orifices, respectively. We use a functional form with a time constant for the heat transfer coefficient to represent the transient temperature behavior, and we describe the time dependence of the heat transfer coefficient. The results show that the calculated temperature and pressure are in good agreement with the experimental values obtained.

Original languageEnglish
Pages (from-to)17169-17174
Number of pages6
JournalInternational Journal of Hydrogen Energy
Volume41
Issue number38
DOIs
Publication statusPublished - Oct 15 2016

All Science Journal Classification (ASJC) codes

  • Renewable Energy, Sustainability and the Environment
  • Fuel Technology
  • Condensed Matter Physics
  • Energy Engineering and Power Technology

Fingerprint

Dive into the research topics of 'Transient temperature and pressure behavior of high-pressure 100 MPa hydrogen during discharge through orifices'. Together they form a unique fingerprint.

Cite this