Transcriptional activation of chac1 and other atf4-target genes induced by extracellular l-serine depletion is negated with glycine consumption in hepa1-6 hepatocarcinoma cells

Momoko Hamano, Shozo Tomonaga, Yusuke Osaki, Hiroaki Oda, Hisanori Kato, Shigeki Furuya

Research output: Contribution to journalArticlepeer-review

9 Citations (Scopus)

Abstract

Mouse embryonic fibroblasts lacking D-3-phosphoglycerate dehydrogenase (Phgdh), which catalyzes the first step of de novo synthesis of l-serine, are particularly sensitive to depletion of extracellular L-serine. In these cells, depletion of l-serine leads to a rapid reduction of intracellular L-serine, cell growth arrest, and altered expression of a wide variety of genes. However, it remains unclear whether reduced availability of extracellular l-serine elicits such responses in other cell types expressing Phgdh. Here, we show in the mouse hepatoma cell line Hepa1-6 that extracellular l-serine depletion transiently induced transcriptional activation of Atf4-target genes, including cation transport regulator-like protein 1 (Chac1). Expression levels of these genes returned to normal 24 h after l-serine depletion, and were suppressed by the addition of l-serine or glycine in the medium. Extracellular l-serine depletion caused a reduction of extracellular and intracellular glycine levels but maintained intracellular l-serine levels in the cells. Further, Phgdh and serine hydroxymethyltransferase 2 (Shmt2) were upregulated after l-serine depletion. These results led us to conclude that the Atf4-mediated gene expression program is activated by extracellular l-serine depletion in Hepa1-6 cells expressing Phgdh, but is antagonized by the subsequent upregulation of l-serine synthesis, mainly from autonomous glycine consumption.

Original languageEnglish
Article number3018
Pages (from-to)1-11
Number of pages11
JournalNutrients
Volume12
Issue number10
DOIs
Publication statusPublished - Oct 2020

All Science Journal Classification (ASJC) codes

  • Food Science
  • Nutrition and Dietetics

Fingerprint

Dive into the research topics of 'Transcriptional activation of chac1 and other atf4-target genes induced by extracellular l-serine depletion is negated with glycine consumption in hepa1-6 hepatocarcinoma cells'. Together they form a unique fingerprint.

Cite this