TY - JOUR
T1 - Transcription of chirality in the organogel systems dictates the enantiodifferentiating photodimerization of substituted anthracene
AU - Dawn, Arnab
AU - Shiraki, Tomohiro
AU - Haraguchi, Shuichi
AU - Sato, Hiroki
AU - Sada, Kazuki
AU - Shinkai, Seiji
PY - 2010/3/22
Y1 - 2010/3/22
N2 - An organogelator (G) that contains 2-anthracenecarboxylic acid (2Ac) attached covalently to a gelator counterpart that consists of 3,4,5-tris(ndodecan-l-yloxy)benzoic acid by means of a chiral amino alcohol linkage has been synthesized. G acts as an efficient gelator of organic solvents, including mixed solvents and chiral solvents. Photodimers isolated after the photoreaction of the gel samples display different degrees of stereoselectivity. In the gel state, the formation of head-to-head (h-h) photodimers is always favored over head-to-tail (h-t) photodimers. Enantiomeric excess (ee) values of the major h-h photodimers reached as high as -56% in the case of the gels with enantiomeric glycidyl methyl ethers. Here, the solvent chirality is outweighed by the intrinsic chirality of the gelator molecule. The packing of the chromophore in the gel state has been characterized by the absorption and the emission behaviors and their variations during the course of gel-tosol phase transition. Whereas for the hexane gel, emission intensity increases with an increase in temperature, other systems show a decrease in emission intensity. Redshift of the λmax in the gel spectra indicates the J-aggregate arrangement of the chromophores. Chiral transcription in the gel state has been investigated by CD spectroscopy, which shows a decrease in CD intensity during the gel-to-sol phase transition. The X-ray diffraction study clearly differentiates among the gels in terms of the order of molecular arrangements. The gel systems are categorized as strong, moderately strong, and weak, that originate from the cooperative or individual participations of intermolecular hydrogen-bonding and π-π interactions, fine-tuned by the solvent polarity and the gelation temperature. A simple model based on the experimental findings and the molecular preorientation as evidenced by the stereochemistry of the photodimers has been proposed.
AB - An organogelator (G) that contains 2-anthracenecarboxylic acid (2Ac) attached covalently to a gelator counterpart that consists of 3,4,5-tris(ndodecan-l-yloxy)benzoic acid by means of a chiral amino alcohol linkage has been synthesized. G acts as an efficient gelator of organic solvents, including mixed solvents and chiral solvents. Photodimers isolated after the photoreaction of the gel samples display different degrees of stereoselectivity. In the gel state, the formation of head-to-head (h-h) photodimers is always favored over head-to-tail (h-t) photodimers. Enantiomeric excess (ee) values of the major h-h photodimers reached as high as -56% in the case of the gels with enantiomeric glycidyl methyl ethers. Here, the solvent chirality is outweighed by the intrinsic chirality of the gelator molecule. The packing of the chromophore in the gel state has been characterized by the absorption and the emission behaviors and their variations during the course of gel-tosol phase transition. Whereas for the hexane gel, emission intensity increases with an increase in temperature, other systems show a decrease in emission intensity. Redshift of the λmax in the gel spectra indicates the J-aggregate arrangement of the chromophores. Chiral transcription in the gel state has been investigated by CD spectroscopy, which shows a decrease in CD intensity during the gel-to-sol phase transition. The X-ray diffraction study clearly differentiates among the gels in terms of the order of molecular arrangements. The gel systems are categorized as strong, moderately strong, and weak, that originate from the cooperative or individual participations of intermolecular hydrogen-bonding and π-π interactions, fine-tuned by the solvent polarity and the gelation temperature. A simple model based on the experimental findings and the molecular preorientation as evidenced by the stereochemistry of the photodimers has been proposed.
UR - http://www.scopus.com/inward/record.url?scp=77949733953&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77949733953&partnerID=8YFLogxK
U2 - 10.1002/chem.200902936
DO - 10.1002/chem.200902936
M3 - Article
C2 - 20151438
AN - SCOPUS:77949733953
SN - 0947-6539
VL - 16
SP - 3676
EP - 3689
JO - Chemistry - A European Journal
JF - Chemistry - A European Journal
IS - 12
ER -