TY - JOUR
T1 - Transcription Fluctuation Effects on Biochemical Oscillations
AU - Nishino, Ryota
AU - Sakaue, Takahiro
AU - Nakanishi, Hiizu
PY - 2013/4/12
Y1 - 2013/4/12
N2 - Some biochemical systems show oscillation. They often consist of feedback loops with repressive transcription regulation. Such biochemical systems have distinctive characteristics in comparison with ordinary chemical systems: i) numbers of molecules involved are small, ii) there are typically only a couple of genes in a cell with a finite regulation time. Due to the fluctuations caused by these features, the system behavior can be quite different from the one by deterministic rate equations, because the rate equations ignore molecular fluctuations and thus are exact only in the infinite molecular number limit. The molecular fluctuations on a free-running circadian system have been studied by Gonze et al. (2002) by introducing a scale parameter Ω for the system size. They consider, however, only the first effect, assuming that the gene process is fast enough for the second effect to be ignored, but this has not been examined systematically yet. Here we study fluctuation effects due to the finite gene regulation time by introducing a new scale parameter τ, which we take as the unbinding time of a nuclear protein from the gene. We focus on the case where the fluctuations due to small molecular numbers are negligible. In simulations on the same system studied by Gonze et al., we find the system is unexpectedly sensitive to the fluctuation in the transcription regulation; the period of oscillation fluctuates about 30 min even when the regulation time scale τ is around 30 s, that is even smaller than 1/1000 of its circadian period. We also demonstrate that the distribution width for the oscillation period and amplitude scales with √τ, and the correlation time scales with 1/τ in the small τ regime. The relative fluctuations for the period are about half of that for the amplitude, namely, the periodicity is more stable than the amplitude.
AB - Some biochemical systems show oscillation. They often consist of feedback loops with repressive transcription regulation. Such biochemical systems have distinctive characteristics in comparison with ordinary chemical systems: i) numbers of molecules involved are small, ii) there are typically only a couple of genes in a cell with a finite regulation time. Due to the fluctuations caused by these features, the system behavior can be quite different from the one by deterministic rate equations, because the rate equations ignore molecular fluctuations and thus are exact only in the infinite molecular number limit. The molecular fluctuations on a free-running circadian system have been studied by Gonze et al. (2002) by introducing a scale parameter Ω for the system size. They consider, however, only the first effect, assuming that the gene process is fast enough for the second effect to be ignored, but this has not been examined systematically yet. Here we study fluctuation effects due to the finite gene regulation time by introducing a new scale parameter τ, which we take as the unbinding time of a nuclear protein from the gene. We focus on the case where the fluctuations due to small molecular numbers are negligible. In simulations on the same system studied by Gonze et al., we find the system is unexpectedly sensitive to the fluctuation in the transcription regulation; the period of oscillation fluctuates about 30 min even when the regulation time scale τ is around 30 s, that is even smaller than 1/1000 of its circadian period. We also demonstrate that the distribution width for the oscillation period and amplitude scales with √τ, and the correlation time scales with 1/τ in the small τ regime. The relative fluctuations for the period are about half of that for the amplitude, namely, the periodicity is more stable than the amplitude.
UR - http://www.scopus.com/inward/record.url?scp=84876095387&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84876095387&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0060938
DO - 10.1371/journal.pone.0060938
M3 - Article
C2 - 23593354
AN - SCOPUS:84876095387
SN - 1932-6203
VL - 8
JO - PloS one
JF - PloS one
IS - 4
M1 - e60938
ER -