TY - JOUR
T1 - Time-resolved and in-situ observation of δ-γ transformation during unidirectional solidification in Fe-C alloys
AU - Nishimura, Tomohiro
AU - Morishita, Kohei
AU - Yoshiya, Masato
AU - Nagira, Tomoya
AU - Yasuda, Hideyuki
N1 - Publisher Copyright:
© 2019 Iron and Steel Institute of Japan. All Rights Reserved.
PY - 2019/2
Y1 - 2019/2
N2 - Synopsis: Time-resolved and in-situ observations using synchrotron radiation X-rays successfully proved that the massive-like transformation, in which the γ phase was produced through the solid - solid transformation and the partition of substitute elements such as Mn and Si at the δ/γ interface could be negligibly small, was selected in the unidirectional solidification of 0.3 mass%C steel at a pulling rate of 50 μm/s. The massive-like transformation produced fine γ grains in the vicinity of the front of δ/γ interface. The coarse γ grains also grew behind the fine γ grains along the temperature gradient. Distance between the δ/γ front and the advancing front of coarse γ grains was as short as 200 μm. Namely, the fine γ grains disappeared within 10 s by the growth of coarsen γ grains along the temperature gradient. In addition, the observation of the δ/γ interface confirmed that a transition from the diffusion-controlled γ growth to the massive-like growth of γ phase occurred at a growth rate of 5 μm/s. Thus, the massive-like transformation is dominantly selected in the carbon steel during conventional solidification processes.
AB - Synopsis: Time-resolved and in-situ observations using synchrotron radiation X-rays successfully proved that the massive-like transformation, in which the γ phase was produced through the solid - solid transformation and the partition of substitute elements such as Mn and Si at the δ/γ interface could be negligibly small, was selected in the unidirectional solidification of 0.3 mass%C steel at a pulling rate of 50 μm/s. The massive-like transformation produced fine γ grains in the vicinity of the front of δ/γ interface. The coarse γ grains also grew behind the fine γ grains along the temperature gradient. Distance between the δ/γ front and the advancing front of coarse γ grains was as short as 200 μm. Namely, the fine γ grains disappeared within 10 s by the growth of coarsen γ grains along the temperature gradient. In addition, the observation of the δ/γ interface confirmed that a transition from the diffusion-controlled γ growth to the massive-like growth of γ phase occurred at a growth rate of 5 μm/s. Thus, the massive-like transformation is dominantly selected in the carbon steel during conventional solidification processes.
UR - http://www.scopus.com/inward/record.url?scp=85062517773&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85062517773&partnerID=8YFLogxK
U2 - 10.2355/tetsutohagane.TETSU-2018-145
DO - 10.2355/tetsutohagane.TETSU-2018-145
M3 - Article
AN - SCOPUS:85062517773
SN - 0021-1575
VL - 105
SP - 168
EP - 176
JO - Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan
JF - Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan
IS - 2
ER -