Time-dependent effects of low-frequency repetitive transcranial magnetic stimulation of the supramarginal gyrus.

T. Torii, A. Sato, M. Iwahashi, Y. Itoh, K. Iramina

Research output: Contribution to journalArticlepeer-review

Abstract

In this paper, we report our studies of the effects of stimulating the bilateral supramarginal gyrus (SMG) with low-frequency transcranial magnetic stimulation (rTMS) or short-term rTMS on brain excitability in humans. We analyzed the effects of various durations of stimulation on P300 latencies of the event-related potential (ERP). Magnetic pulses were delivered using a figure-eight flat coil. The intensity of rTMS was set to 80 % of the subject's motor threshold. In each round of rTMS, 100 magnetic pulses were applied over the scalp at frequencies of 1.00, 0.75, and 0.50 Hz. ERPs were measured prior to magnetic stimulation as a control. The effects of magnetic stimulation were then determined by measuring its effects on P300 latencies elicited by an odd-ball task. These latencies were measured before and 0, 5, 10, and 15 min after the magnetic stimulation. 1.00 Hz low-frequency rTMS of the left SMG decreased P300 latencies for approximately 10 min. In contrast, 0.50 Hz rTMS of the left SMG resulted in delayed P300 latencies for approximately 15 min. We furthermore found that 0.75 Hz rTMS of the left SMG and 1.00, 0.75 and 0.5 Hz rTMS of the right SMG did not affect P300 latencies. These results suggest that the duration of the effects of rTMS depend on the frequency of stimulation.

Original languageEnglish
Pages (from-to)3372-3375
Number of pages4
JournalAnnual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings
Publication statusPublished - 2012
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Computer Vision and Pattern Recognition
  • Signal Processing
  • Biomedical Engineering
  • Health Informatics

Fingerprint

Dive into the research topics of 'Time-dependent effects of low-frequency repetitive transcranial magnetic stimulation of the supramarginal gyrus.'. Together they form a unique fingerprint.

Cite this