Abstract
Three-dimensional numerical simulations of strongly nonlinear free surface flows are performed by lattice Boltzmann method (LBM), which features a number of performance-related advantages, particularly concerning data locality and parallel computing. A Multi-Passage-Interface (MPI) multicore processors parallelized free surface LBM solver is applied for the present three-dimensional numerical simulations. A Smagorinsky LES turbulent model serves to capture the small-scale turbulent structures of the flow. Experiments on dam breaking from previous articles are used to compare and verify two-dimensional (2D) and three-dimensional (3D) LBM model. A new experimental setup is also developed in order to observe the three-dimensionality effect. The findings demonstrated that the free surface LBM simulation agrees well with the experiments.
Original language | English |
---|---|
Pages (from-to) | 29-35 |
Number of pages | 7 |
Journal | Evergreen |
Volume | 4 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2017 |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Ceramics and Composites
- Surfaces, Coatings and Films
- Management, Monitoring, Policy and Law