Abstract
Cobalt suicides were formed by heat treatment and ion irradiation for stacked 7 nm Co and 25 nm Si layers on 20 nm SiO2 films. Irradiation was performed with 25keV Ar+ ions to a dose of 5×1015cm-2 at sample temperatures between room temperature and 700°C. The phase, atomic concentration profiles, and sheet resistance of the suicide layers were investigated as a function of the processing temperature. X-ray diffraction measurement showed that the phase of CoSi2 was formed by irradiation at temperatures above 300°C, and X-ray photoelectron spectroscopy measurement revealed uniform distributions of Co and Si atoms with the atomic ratio of Co : Si = 1 : 2 for samples irradiated at temperatures above 200°C. Sheet resistance measurement showed that almost complete di-silicidation occurred by irradiation at 700°C. It is concluded that the energy deposited by ions contributes to the migration of the species for silicidation at a lower temperature, and Co/Si mixed layers with an atomic ratio of 1 : 2 are easily obtained by irradiation of the stacked thin films with low-energy ions. Since the suicide regions formed in the deposited thin films were decomposed during the irradiation at temperatures below 700°C, thermal annealing at 700°C is necessary to obtain completely uniform CoSi2 layers after the irradiation.
Original language | English |
---|---|
Pages (from-to) | 6117-6122 |
Number of pages | 6 |
Journal | Japanese Journal of Applied Physics |
Volume | 37 |
Issue number | 11 |
DOIs | |
Publication status | Published - Nov 1998 |
All Science Journal Classification (ASJC) codes
- Engineering(all)
- Physics and Astronomy(all)