TY - GEN
T1 - Thermodynamic analysis for the prediction of N composition in coherently grown GaAsN for a multi-junction solar cell
AU - Kawano, Jun
AU - Kangawa, Yoshihiro
AU - Yayama, Tomoe
AU - Ito, Tomonori
AU - Kakimoto, Koichi
AU - Koukitu, Akinori
PY - 2011
Y1 - 2011
N2 - Thermodynamic analysis was performed to investigate the coherent growth of GaAs 1-xN x thin films with low N content. In the present study, a new algorithm of the simulation code was developed to theoretically predict the relationship between solid composition and growth condition. This algorithm is applicable to wider varieties of combinations of gaseous sources than is the traditional algorithm. The system using trimethylgalllium (TMG), AsH 3, and NH 3 was analyzed with the new code, and the results showed that the required input partial pressure ratio of NH 3 to the group-V element is over 99% for incorporation of a small percent of N into a solid. It is difficult to incorporate N into the solid when the input V/III ratio is low, while in the case of a high input V/III ratio, stable growth with a small percent of N can proceed. In the case of coherently grown GaAs 1-xN x, the lattice constraint from the substrate would suppress the incorporation of nitrogen. On the other hand, a higher input Ga partial pressure ratio enhances the stable growth of GaAs 1-xN x with a small N content, though this condition tends to easily induce generation of dislocations. Furthermore, a much lower optimum N/As ratio in input gas can be achieved in the system with dimethylhydrazine (DMHy). This result confirms that the difference in gaseous sources has a great effect on N incorporation. When determining well-optimized experimental growth conditions, these influences including crystallinity should all be considered.
AB - Thermodynamic analysis was performed to investigate the coherent growth of GaAs 1-xN x thin films with low N content. In the present study, a new algorithm of the simulation code was developed to theoretically predict the relationship between solid composition and growth condition. This algorithm is applicable to wider varieties of combinations of gaseous sources than is the traditional algorithm. The system using trimethylgalllium (TMG), AsH 3, and NH 3 was analyzed with the new code, and the results showed that the required input partial pressure ratio of NH 3 to the group-V element is over 99% for incorporation of a small percent of N into a solid. It is difficult to incorporate N into the solid when the input V/III ratio is low, while in the case of a high input V/III ratio, stable growth with a small percent of N can proceed. In the case of coherently grown GaAs 1-xN x, the lattice constraint from the substrate would suppress the incorporation of nitrogen. On the other hand, a higher input Ga partial pressure ratio enhances the stable growth of GaAs 1-xN x with a small N content, though this condition tends to easily induce generation of dislocations. Furthermore, a much lower optimum N/As ratio in input gas can be achieved in the system with dimethylhydrazine (DMHy). This result confirms that the difference in gaseous sources has a great effect on N incorporation. When determining well-optimized experimental growth conditions, these influences including crystallinity should all be considered.
UR - http://www.scopus.com/inward/record.url?scp=84861075471&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84861075471&partnerID=8YFLogxK
U2 - 10.1109/PVSC.2011.6186002
DO - 10.1109/PVSC.2011.6186002
M3 - Conference contribution
AN - SCOPUS:84861075471
SN - 9781424499656
T3 - Conference Record of the IEEE Photovoltaic Specialists Conference
SP - 496
EP - 500
BT - Program - 37th IEEE Photovoltaic Specialists Conference, PVSC 2011
T2 - 37th IEEE Photovoltaic Specialists Conference, PVSC 2011
Y2 - 19 June 2011 through 24 June 2011
ER -