Theoretical Study on the Kinetics of Thermal Decomposition of Guaiacol and Catechol

Yuki Furutani, Yuki Dohara, Shinji Kudo, Jun Ichiro Hayashi, Koyo Norinaga

Research output: Contribution to journalArticlepeer-review

16 Citations (Scopus)


The theoretical aspects of the development of a chemical kinetic model for guaiacol and catechol pyrolysis are presented to describe the pyrolysis behaviors of the individual lignin-derived components. The possible pyrolysis pathways involving both unimolecular and bimolecular decomposition were investigated by the potential energy surfaces (PES) calculated at CBS-QB3 level. The high-pressure limiting rate constants of each elementary reaction step were evaluated based on the transition state theory (TST) to determine the dominant pyrolysis pathways. The kinetic analysis results predicted the most favorable catechol unimolecular decomposition pathways, where catechol isomerization to 2-hydroxycyclohexa-2,4-dien-1-one occurred via migration of the hydroxyl H atom, followed by decomposition into 1,3-cyclobutadiene, acetylene, and CO. In the case of the bimolecular reaction of catechol, a hydrogen radical is coupled to the carbon atom in the benzene ring, leading to the formation of phenol and a hydroxyl radical through dehydroxylation. On the other hand, guaiacol is likely to form catechol and phenol via the O-CH3 homolysis and coupling of a hydrogen radical to the carbon atom with the methoxyl group, respectively.

Original languageEnglish
Pages (from-to)8495-8503
Number of pages9
JournalJournal of Physical Chemistry A
Issue number44
Publication statusPublished - Nov 9 2017

All Science Journal Classification (ASJC) codes

  • Physical and Theoretical Chemistry


Dive into the research topics of 'Theoretical Study on the Kinetics of Thermal Decomposition of Guaiacol and Catechol'. Together they form a unique fingerprint.

Cite this