Theoretical study on electronic and electrical properties of nanostructural ZnO

Zhigang Zhu, Arunabhiram Chutia, Riadh Sahnoun, Michihisa Koyama, Hideyuki Tsuboi, Nozomu Hatakeyama, Akira Endou, Hiromitsu Takaba, Momoji Kubo, Carlos A. Del Carpio, Akira Miyamoto

Research output: Contribution to journalArticlepeer-review

27 Citations (Scopus)


The electronic and electrical properties of ZnO semiconductor single wall nanotube were investigated using periodic supercell approach within density functional theory combined with tight-binding quantum chemistry method. Armchair (10, 10) and zigzag (10, 0) nanotubes were considered. The lower strain energies required to roll up a ZnO graphitic sheet into a tube and the negative cohesive energies implied the possibility for the formation of ZnO single wall nanotubes. It was shown that the band gaps between the valence band maximum (VBM) and conduction band minimum (CBM) of nanotubes calculated by means of the two methods are similar and are larger than that of the bulk ZnO. It was found that the band gaps of ZnO nanotube are relatively insensitive to the chirality and diameter. According to the estimated electrical conductivities, the non-defect bulk and nanotube ZnO exhibited insulator properties, while they exhibited semiconductor properties when oxygen vacancies are introduced in the structures. The relative stability and band gap of fullerene-like ZnO clusters were also analyzed.

Original languageEnglish
Pages (from-to)2999-3006
Number of pages8
JournalJapanese journal of applied physics
Issue number4 PART 2
Publication statusPublished - Apr 25 2008
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • General Engineering
  • General Physics and Astronomy


Dive into the research topics of 'Theoretical study on electronic and electrical properties of nanostructural ZnO'. Together they form a unique fingerprint.

Cite this