Theoretical model analysis of (d,xn) reactions on Be 9 and C 12 at incident energies up to 50 MeV

Shinsuke Nakayama, Hiroshi Kouno, Yukinobu Watanabe, Osamu Iwamoto, Kazuyuki Ogata

Research output: Contribution to journalArticlepeer-review

26 Citations (Scopus)

Abstract

Background: In the design of deuteron accelerator neutron sources, accurate nuclear data of deuteron-induced reactions are indispensable over a wide range of incident energy. Reliable model calculations play an important role in completing the necessary nuclear data since currently available experimental data are insufficient. We have been developing a code system dedicated for the deuteron-induced reactions, called deuteron-induced reaction analysis code system (DEURACS). It was applied successfully to (d,xp) reactions at 56 and 100 MeV. Purpose: The purpose of the present work is to investigate the applicability of DEURACS to (d,xn) reactions on Be9 and C12 for incident energies below 50 MeV and to clarify neutron production mechanism. Methods: Double-differential thick target neutron yields (TTNYs) from deuteron bombardment on thick Be and C targets are analyzed. The TTNYs are derived using the double differential (d,xn) cross sections calculated by DEURACS and the stopping power of deuteron in the target. The calculated TTNYs are decomposed into individual components corresponding to elastic breakup, proton stripping, and statistical decay reactions. Results: The calculated TTNYs reproduced the experimental data quantitatively well in the incident energy range up to 50 MeV. From the analysis, it was found that the proton stripping reaction makes the most dominant contribution to neutron production. Conclusions: DEURACS is applicable to (d,xn) reactions on Be9 and C12 for incident energies below 50 MeV. Modeling of the stripping reaction is essential to predict neutron production yields accurately in the design of deuteron accelerator neutron sources.

Original languageEnglish
Article number014618
JournalPhysical Review C
Volume94
Issue number1
DOIs
Publication statusPublished - Jul 29 2016

All Science Journal Classification (ASJC) codes

  • Nuclear and High Energy Physics

Fingerprint

Dive into the research topics of 'Theoretical model analysis of (d,xn) reactions on Be 9 and C 12 at incident energies up to 50 MeV'. Together they form a unique fingerprint.

Cite this