Theonellamide A, a marine-sponge-derived bicyclic peptide, binds to cholesterol in aqueous DMSO: Solution NMR-based analysis of peptide-sterol interactions using hydroxylated sterol

Kimberly Cornelio, Rafael Atillo Espiritu, Shinya Hanashima, Yasuto Todokoro, Raymond Malabed, Masanao Kinoshita, Nobuaki Matsumori, Michio Murata, Shinichi Nishimura, Hideaki Kakeya, Minoru Yoshida, Shigeki Matsunaga

Research output: Contribution to journalArticlepeer-review

9 Citations (Scopus)

Abstract

Theonellamides (TNMs) are antifungal and cytotoxic bicyclic dodecapeptides isolated from the marine sponge Theonella sp. The inclusion of cholesterol (Chol) or ergosterol in the phosphatidylcholine membrane is known to significantly enhance the membrane affinity for theonellamide A (TNM-A). We have previously revealed that TNM-A stays in a monomeric form in dimethylsulfoxide (DMSO) solvent systems, whereas the peptide forms oligomers in aqueous media. In this study, we utilized 1H NMR chemical shift changes (Δδ1H) in aqueous DMSO solution to evaluate the TNM-A/sterol interaction. Because Chol does not dissolve well in this solvent, we used 25-hydroxycholesterol (25-HC) instead, which turned out to interact with membrane-bound TNM-A in a very similar way to that of Chol. We determined the dissociation constant, KD, by NMR titration experiments and measured the chemical shift changes of TNM-A induced by 25-HC binding in the DMSO solution. Significant changes were observed for several amino acid residues in a certain area of the molecule. The results from the solution NMR experiments, together with previous findings, suggest that the TNM-Chol complex, where the hydrophobic cavity of TNM probably incorporates Chol, becomes less polar by Chol interaction, resulting in a greater accumulation of the peptide in membrane. The deeper penetration of TNM-A into the membrane interior enhances membrane disruption. We also demonstrated that hydroxylated sterols, such as 25-HC that has higher solubility in most NMR solvents than Chol, act as a versatile substitute for sterol and could be used in 1H NMR-based studies of sterol-binding peptides.

Original languageEnglish
Pages (from-to)228-235
Number of pages8
JournalBiochimica et Biophysica Acta - Biomembranes
Volume1861
Issue number1
DOIs
Publication statusPublished - Jan 2019

All Science Journal Classification (ASJC) codes

  • Biophysics
  • Biochemistry
  • Cell Biology

Fingerprint

Dive into the research topics of 'Theonellamide A, a marine-sponge-derived bicyclic peptide, binds to cholesterol in aqueous DMSO: Solution NMR-based analysis of peptide-sterol interactions using hydroxylated sterol'. Together they form a unique fingerprint.

Cite this