TY - JOUR
T1 - The ortholog of human solute carrier family 35 member B1 (UDP-galactose transporter-related protein 1) is involved in maintenance of ER homeostasis and essential for larval development in Caenorhabditis elegans
AU - Dejima, Katsufumi
AU - Murata, Daisuke
AU - Mizuguchi, Souhei
AU - Nomura, Kazuko H.
AU - Gengyo-Ando, Keiko
AU - Mitani, Shohei
AU - Kamiyama, Shin
AU - Nishihara, Shoko
AU - Nomura, Kazuya
PY - 2009/7
Y1 - 2009/7
N2 - Although the solute carrier 35B1 (SLC35B1) is evolutionarily conserved, its functions in metazoans remain unknown. To elucidate its function, we examined developmental roles of an SLC35B1 family gene (HUT-1: homolog of UDP-Gal transporter) in Caenorhabditis elegans. We isolated a deletion mutant of the gene and characterized phenotypes of the mutant and hut-1 RNAitreated worms. GFP-HUT-1 reporter analysis was performed to examine gene expression patterns. We also tested whether several nucleotide sugar transporters can compensate for hut-1 deficiency. The hut-1 deletion mutant and RNAi worms showed larval growth defect and lethality with disrupted intestinal morphology. Inactivation of hut-1 induced chronic endoplasmic reticulum (ER) stress, and hut-1 showed genetic interactions with the atf-6, pek-1, and ire-1 genes involved in unfolded protein response signaling. ER ultrastructure and ER marker distribution in hut-1-deficient animals showed that HUT-1 is required for maintenance of ER structure. Reporter analysis revealed that HUT-1 is an ER protein ubiquitously expressed in tissues, including the intestine. Lethality and the ER stress phenotype of the mutant were rescued with the human hut-1 ortholog UGTrel1. These results indicate important roles for hut-1 in development and maintenance of ER homeostasis in C. elegans.
AB - Although the solute carrier 35B1 (SLC35B1) is evolutionarily conserved, its functions in metazoans remain unknown. To elucidate its function, we examined developmental roles of an SLC35B1 family gene (HUT-1: homolog of UDP-Gal transporter) in Caenorhabditis elegans. We isolated a deletion mutant of the gene and characterized phenotypes of the mutant and hut-1 RNAitreated worms. GFP-HUT-1 reporter analysis was performed to examine gene expression patterns. We also tested whether several nucleotide sugar transporters can compensate for hut-1 deficiency. The hut-1 deletion mutant and RNAi worms showed larval growth defect and lethality with disrupted intestinal morphology. Inactivation of hut-1 induced chronic endoplasmic reticulum (ER) stress, and hut-1 showed genetic interactions with the atf-6, pek-1, and ire-1 genes involved in unfolded protein response signaling. ER ultrastructure and ER marker distribution in hut-1-deficient animals showed that HUT-1 is required for maintenance of ER structure. Reporter analysis revealed that HUT-1 is an ER protein ubiquitously expressed in tissues, including the intestine. Lethality and the ER stress phenotype of the mutant were rescued with the human hut-1 ortholog UGTrel1. These results indicate important roles for hut-1 in development and maintenance of ER homeostasis in C. elegans.
UR - http://www.scopus.com/inward/record.url?scp=68549135294&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=68549135294&partnerID=8YFLogxK
U2 - 10.1096/fj.08-123737
DO - 10.1096/fj.08-123737
M3 - Article
C2 - 19270184
AN - SCOPUS:68549135294
SN - 0892-6638
VL - 23
SP - 2215
EP - 2225
JO - FASEB Journal
JF - FASEB Journal
IS - 7
ER -