The iron oxidation state of Ryugu samples

Mathieu Roskosz, Pierre Beck, Jean Christophe Viennet, Tomoki Nakamura, Barbara Lavina, Michael Y. Hu, Jiyong Zhao, Esen E. Alp, Yoshio Takahashi, Tomoyo Morita, Kana Amano, Hisayoshi Yurimoto, Takaaki Noguchi, Ryuji Okazaki, Hikaru Yabuta, Hiroshi Naraoka, Kanako Sakamoto, Shogo Tachibana, Toru Yada, Masahiro NishimuraAiko Nakato, Akiko Miyazaki, Kasumi Yogata, Masanao Abe, Tatsuaki Okada, Tomohiro Usui, Makoto Yoshikawa, Takanao Saiki, Satoshi Tanaka, Fuyuto Terui, Satoru Nakazawa, Sei Ichiro Watanabe, Yuichi Tsuda

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

The Hayabusa2 mission sampled Ryugu, an asteroid that did not suffer extensive thermal metamorphism, and returned rocks to the Earth with no significant air exposure. It therefore offers a unique opportunity to study the redox state of carbonaceous Cb-type asteroids and evaluate the overall redox state of the most primitive rocks of the solar system. An analytical framework was developed to investigate the iron mineralogy and valence state in extraterrestrial material at the micron scale by combining x-ray diffraction, conventional Mössbauer (MS), and nuclear forward scattering (NFS) spectroscopies. An array of standard minerals was analyzed and cross-calibrated between MS and NFS. Then, MS and NFS spectra on three Ryugu grains were collected at the bulk and the micron scales. In Ryugu samples, iron is essentially accommodated in magnetite, clay minerals (serpentine–smectite), and sulfides. Only a single set of Mössbauer parameters was necessary to account for the entire variability observed in MS and NFS spectra, at all spatial scales investigated. These parameters therefore make up a fully consistent iron mineralogical model for the Ryugu samples. As far as MS and NFS spectroscopies are concerned, Ryugu grains are overall similar to each other and share most of their mineralogical features with CI-type chondrites. In detail however, no ferrihydrite is found in Ryugu particles even at the very sensitive scale of Mössbauer spectroscopy. The typical Fe3+/Fetot of clay minerals is much lower than typical redox ratios measured in CI chondrites (Fe3+/Fetot = 85%–90%). Furthermore, magnetite from Ryugu is stoichiometric with no significant maghemite component, whereas up to 12% of maghemite was previously identified in the Orgueil's so-called magnetite. These differences suggest that most CI meteorites suffered terrestrial alteration and that the preterrestrial composition of these carbon-rich samples was less oxidized than previously measured. However, it is not clear yet whether or not the parent bodies of CI chondrites were as reduced as Ryugu. Finally, the high spatial resolution of NFS allows to disentangle the redox state and the crystal chemistry of iron accommodated in serpentine and smectite. The most likely polytype of serpentine is lizardite, containing <35% of Fe3+, a fraction of which being tetrahedrally coordinated. Smectite is more oxidized (Fe3+/Fetot > 65%) and mainly contains octahedral ferric iron. This finding implies that these clays formed from highly alkaline fluids and the spatial variability highlighted here may suggest a temporal evolution or a spatial variability of the nature of this fluid.

Original languageEnglish
Pages (from-to)1925-1946
Number of pages22
JournalMeteoritics and Planetary Science
Volume59
Issue number8
DOIs
Publication statusPublished - Aug 2024

All Science Journal Classification (ASJC) codes

  • Geophysics
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'The iron oxidation state of Ryugu samples'. Together they form a unique fingerprint.

Cite this