The initialization of the MIROC climate models with hydrographic data assimilation for decadal prediction

Hiroaki Tatebe, Masayoshi Ishii, Takashi Mochizuki, Yoshimitsu Chikamoto, Takashi T. Sakamoto, Yoshiki Komuro, Masato Mori, Sayaka Yasunaka, Masahiro Watanabe, Koji Ogochi, Tatsuo Suzuki, Teruyuki Nishimura, Masahide Kimoto

Research output: Contribution to journalArticlepeer-review

65 Citations (Scopus)

Abstract

This paper documents the procedure of ocean data assimilation that initializes the climate models MIROC3m, MIROC4h, and MIROC5 for decadal climate predictions following the CMIP5 protocol, and summarizes the performance of the climate models using this data assimilation. Only anomalies of observed ocean hydrographic data are assimilated using the incremental analysis update method in order to prevent model climate drifts during predictions. In the case of MIROC4h, which has an eddy-permitting ocean model, a spatial smoother is used in calculating analysis increments so that oceanic mesoscale eddies cannot be damped by observational constraints and that they are generated and decay physically in response to the assimilated background state. Globally, the decadal-scale variations of ocean temperatures in the assimilation runs are highly correlated with the observations. Variations of surface air temperature over oceans are also consistent with the observations, but this is not the case in some regions over continents. Atmospheric responses to the SST variations corresponding to the Pacific Decadal Oscillations and the Atlantic Multi-decadal Oscillation are better represented in MIROC4h and MIROC5 than in MIROC3m. The high resolution of MIROC4h and new cloud parameterizations in MIROC5 may contribute to this improvement. Root-mean-squared amplitudes of sea surface height variations associated with oceanic eddies (hereafter, eddy activity) are not suppressed undesirably in the MIROC4h assimilation run and these are comparable with those in the uninitialized runs. In the Kuroshio-Oyashio confluence zone, eddy activity is modulated on a decadal timescale. This modulation is reasonably represented in the assimilation run compared with the observations. In the hindcast experiments, significant decadal prediction skills are found for the North Atlantic, the subtropical North Pacific, and the Indian Ocean. The decadal climate predictions are expected to contribute to the IPCC AR5 and political decision-making for the coming decades.

Original languageEnglish
Pages (from-to)275-294
Number of pages20
JournalJournal of the Meteorological Society of Japan
Volume90
Issue numberA
DOIs
Publication statusPublished - 2012
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Atmospheric Science

Fingerprint

Dive into the research topics of 'The initialization of the MIROC climate models with hydrographic data assimilation for decadal prediction'. Together they form a unique fingerprint.

Cite this