The influence of solder composition on the impact strength of lead-free solder ball grid array joints

H. Tsukamoto, T. Nishimura, S. Suenaga, S. D. McDonald, K. W. Sweatman, K. Nogita

Research output: Contribution to journalArticlepeer-review

49 Citations (Scopus)

Abstract

This study aims to investigate the shear and tensile impact strength of solder ball attachments. Tests were conducted on Ni-doped and non-Ni-doped Sn-0.7wt.% Cu, Sn-37wt.% Pb and Sn-3.0wt.% Ag-0.7wt.% Cu solder ball grid arrays (BGAs) placed on Cu substrates, which were as-reflowed and aged, over a wide range of displacement rates from 10 to 4000 mm/s in shear and from 1 to 400 mm/s in tensile tests. Ni additions to the Sn-0.7wt.% Cu solders has slowed the growth of the interface intermetallic compounds (IMCs) and made the IMC layer morphology smooth. As-reflowed Ni-doped Sn-0.7wt.% Cu BGA joints show superior properties at high speed shear and tensile impacts compared to the non-Ni-doped Sn-0.7wt.% Cu and Sn-3.0wt.% Ag-0.7wt.% Cu BGAs. Sn-3.0wt.% Ag-0.7wt.% Cu BGAs exhibit the least resistance in both shear and tensile tests among the four compositions of solders, which may result from the cracks in the IMC layers introduced during the reflow processes.

Original languageEnglish
Pages (from-to)657-667
Number of pages11
JournalMicroelectronics Reliability
Volume51
Issue number3
DOIs
Publication statusPublished - Mar 2011
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics
  • Condensed Matter Physics
  • Safety, Risk, Reliability and Quality
  • Surfaces, Coatings and Films
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'The influence of solder composition on the impact strength of lead-free solder ball grid array joints'. Together they form a unique fingerprint.

Cite this