The influence of α- And γ-Al2O3 phases on the thermoelectric properties of Al-doped ZnO

Li Han, Ngo Van Nong, Le Thanh Hung, Tim Holgate, Nini Pryds, Michitaka Ohtaki, Søren Linderoth

    Research output: Contribution to journalArticlepeer-review

    44 Citations (Scopus)


    A systematic investigation on the microstructure and thermoelectric properties of Al-doped ZnO using α- and γ-Al2O 3 as dopants was conducted in order to understand the doping effect and its mechanism. The samples were prepared by the spark plasma sintering technique from precursors calcined at various temperatures. Clear differences in microstructure and thermoelectric properties were observed between the samples doped with α- and γ-Al2O3. At any given calcination temperature, γ-Al2O3 resulted in the formation of a larger amount of the ZnAl2O4 phase in the Al-doped ZnO samples. The average grain size was found to be smaller for the γ-Al2O3-doped samples than that for the α-Al2O3-doped ones under the same sintering condition. It is proposed that the ZnAl2O4 phase is the reason for the observed suppression of grain growth and also for the slightly reduced lattice thermal conductivity exhibited by these samples. The γ-Al2O3 promoted the substitution for donor impurities in ZnO, thus resulting in shrinkage of the unit cell volume and an increase in the electrical conductivity compared with the α-Al 2O3-doped ZnO. At a calcination temperature of 1173 K, the γ-Al2O3-doped sample showed a ZT value of 0.17 at 1173 K, which is 27% higher than that of the α-Al2O 3-doped sample.

    Original languageEnglish
    Pages (from-to)291-296
    Number of pages6
    JournalJournal of Alloys and Compounds
    Publication statusPublished - Apr 5 2013

    All Science Journal Classification (ASJC) codes

    • Mechanics of Materials
    • Mechanical Engineering
    • Metals and Alloys
    • Materials Chemistry


    Dive into the research topics of 'The influence of α- And γ-Al2O3 phases on the thermoelectric properties of Al-doped ZnO'. Together they form a unique fingerprint.

    Cite this